
USENIX Security ’24 Artifact Appendix: Arcanum: Detecting and
Evaluating the Privacy Risks of Browser Extensions on

Web Pages and Web Content

Qinge Xie, Manoj Vignesh Kasi Murali, Paul Pearce, Frank Li
Georgia Institute of Technology

A Artifact Appendix

A.1 Abstract

In this work, we develop Arcanum, a dynamic taint tracking
system for modern Chrome extensions designed to monitor
the flow of sensitive user content from web pages. Arcanum
defines a diverse set of taint sources ranging from meta-data,
to content DOM elements, location information, history data,
and cookies. From these sources, Arcanum is able to track
data flow to a variety of exit taint sinks, including all forms
of web requests and storage APIs. A key feature of Arcanum
is allowing researchers to instrument specific web page el-
ements as tainted at runtime via JS DOM annotations. We
deploy Arcanum to test all functional extensions currently
in the Chrome Web Store for the automated exfiltration of
user data across seven sensitive websites: Amazon, Facebook,
Gmail, Instagram, LinkedIn, Outlook, and PayPal. We ob-
serve significant privacy risks across thousands of extensions,
including hundreds of extensions automatically extracting
user content from within web pages.

The Arcanum prototype is built on Chromium Browser ver-
sion 108.0.5359.71. We open-source all Chromium patches
of the Arcanum implementation, allowing users to build and
adapt Arcanum from the Chromium source code. In the ar-
tifacts, we provide custom Chrome extensions for testing
Arcanum’s functionality, as well as representative real-world
extensions that were evaluated and flagged by Arcanum.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

When evaluating extension behavior on a web page using Ar-
canum, we strongly recommend users to record that web page
and replay it across the extensions evaluated using WprGo.
By only visiting the pages once and replaying the captured
response, we can minimize additional load on a site regardless
of the number of extensions evaluated. We provide web page
recordings for all experimental target pages in this artifact.
We also note that Arcanum itself does not require replay and
can be run on live web pages.

A.2.2 How to access

This artifact, including 1) all Chromium patches of
the Arcanum implementation, 2) sample extensions,
3) JavaScript files for annotating specific DOM ele-
ments on web pages, 4) web page recordings, and 5)
Python test case scripts for each sample extension, is
hosted on GitHub and can be accessed via: https:
//github.com/BEESLab/Arcanum/releases/tag/1.0.
Additionally, we provide two Docker images on Docker Hub
that have the necessary dependencies for 1) building Arcanum
from the Chromium source code, and 2) running Arcanum
to test sample extensions. They can be pulled via “docker
pull xqgtiti/arcanum_build:latest”, and “docker
pull xqgtiti/arcanum_run:latest”, respectively.

A.2.3 Hardware dependencies

Our experiments can be conducted either directly on a single
physical host machine or alternatively in a VM-based lab
environment on a host machine.

A x86_64 (amd64) machine with at least 8 GiB RAM, 4
cores/8 threads CPU, and at least 100 GiB of free disk space
is required. More than 16 GiB RAM is highly recommended.
For reference, all our experiments were conducted on
a physical machine with 512 GiB RAM, 32 cores/128
threads CPU, running Ubuntu 20.04.6 LTS (Kernel Linux
5.4.0-173-generic). The provided test cases were also eval-
uated on another Linux server with 8 CPUs and 16 GiB RAM.

A.2.4 Software dependencies

Git is required for fetching the Chromium source code
108.0.5359.71 (Linux) and depot tools.

To build Arcanum, we provide a Docker image (Ubuntu
20.04) that includes all necessary dependencies for building a
version of Chromium patched with the Arcanum implementa-
tion. Alternatively, users can follow the official instruction to
build your own Docker container.

To run Arcanum, we provide a Docker image (Ubuntu
18.04) that includes all necessary dependencies. We strongly

https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://github.com/BEESLab/Arcanum/releases/tag/1.0
https://github.com/BEESLab/Arcanum/releases/tag/1.0
https://chromium.googlesource.com/chromium/src/+/refs/tags/108.0.5359.71
https://chromium.googlesource.com/chromium/tools/depot_tools.git
https://hub.docker.com/r/xqgtiti/arcanum_build
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md#Docker
https://hub.docker.com/r/xqgtiti/arcanum_run


recommend using this pre-configured image, as our test case
scripts partly rely on its settings (such as software executable
paths). If you choose to build the environment manually, the
following software dependencies are required:
• Go 1.19.12 Linux
• WprGo v0.0.0-20230901234838-f16ca3c78e46
• Python 3.8.0 Linux (with Selenium 4, pyvirtualdisplay)
• ChromeDriver 108.0.5359.71
• Xvfb
• Chromium Dependencies
While we have not verified compatibility with versions other
than those listed above, we believe that our artifacts will work
with Ubuntu 18.04, 20.04, and 22.04, Python 3.8+ (Selenium
4), and any versions of Xvfb and WprGo.

A.2.5 Benchmarks

To benchmark the performance of Arcanum, we provide two
types of sample extensions in this artifact as the dataset:
Custom Extensions. We provide sample extensions imple-
mented by ourselves to demonstrate how extensions can be
tested using Arcanum, on seven websites that were exper-
imented with in our paper (Amazon, Facebook, Gmail, In-
stagram, LinkedIn, Outlook, and PayPal). For each site, we
provide one Manifest Version 2 (MV2) extension and one
Manifest Version 3 (MV3) extension. In addition to these
extensions, we also provide custom extensions to guide users
in testing the taint tracking process of Arcanum, including
testing different taint sources, sinks, and propagation cases.
Real-world Extensions. We provide representative exten-
sions from the Chrome Web Store that have been tested and
flagged by Arcanum. Specifically, we include all extensions
discussed as case studies of Section 4.10, as well as those
listed in Table 7 of Section 4.5 (i.e., the flagged extensions
with the most users in each web content category) in our paper.
The extension IDs are listed in Table 1:

Extension ID Paper Section

aamfmnhcipnbjjnbfmaoooiohikifefk Case Study, Table 7
haphbbhhknaonfloinidkcmadhfjoghc Case Study, Table 7
jdianbbpnakhcmfkcckaboohfgnngfcc Case Study, Table 7
oadkgbgppkhoaaoepjbcnjejmkknaobg Case Study, Table 7
blcdkmjcpgjojjffbdkckaiondfpoglh Case Study
kecadfolelkekbfmmfoifpfalfedeljo Table 7
nkecaphdplhfmmbkcfnknejeonfnifbn Table 7
bahcihkpdjlbndandplnfmejnalndgjo Table 7
pjmfidajplecneclhdghcgdefnmhhlca Table 7
mdfgkcdjgpgoeclhefnjgmollcckpedk Table 7

Table 1: Real-world extension IDs.

Web Page Recording Files. Since popular sites periodically
mutate to combat automation/scraping, we provide recording
files for each target page of the seven websites (listed in Table

3 of our paper) for consistent evaluation. JS scripts for anno-
tating privacy-sensitive DOM elements on each web page are
also provided. All sample extensions mentioned above are
tested by Arcanum using these recording files in this artifact.

A.3 Set-up
A.3.1 Installation

This section describes how to set up a build environment for
Chromium and build a version of Chromium with the patches
of the Arcanum implementation. The set-up is mostly based
on the official Chromium build instructions on Linux.

1. On the host machine, clone the Chromium depot tools to
a specific directory (e.g., $HOME) and add their path to the
PATH environment variable.

1 git clone https://chromium.googlesource.
↪→ com/chromium/tools/depot_tools.git

2 export PATH="${HOME}/depot_tools:$PATH"

2. Get the Chromium source code (this may take a while
depending on your network connection).

1 mkdir ${HOME}/chromium && cd ${HOME}/
↪→ chromium/

2 fetch --nohooks chromium

3. In src/, check out the branch for Chromium version
108.0.5359.71. You could also refer to the official instruc-
tions on working with Chromium release branches.

1 cd src
2 gclient sync --with_branch_heads --

↪→ with_tags
3 git fetch
4 git checkout tags /108.0.5359.71
5 gclient sync --with_branch_heads --

↪→ with_tags

4. Prepare the Docker container for building. Pull the pro-
vided Docker image for building, then launch a Docker
container from this image. Make sure to mount the host
directory containing the Chromium source code and the
depot_tools into the container:

1 docker pull xqgtiti/arcanum_build:latest
2 docker run -it --mount src=${HOME},target

↪→ ="/mnt/build/",type=bind --name=
↪→ build xqgtiti/arcanum_build:latest

5. Prepare build in the Docker container’s interactive shell.
Add the path of Chromium depot tools to the PATH en-
vironment variable. The command “gn args ...” auto-
matically opens a file (args.gn) in the default text editor.
Replace the contents of this file with the contents of the file
“∼/build/args.gn” from the artifact GitHub repository.

https://go.dev/dl/go1.19.12.linux-amd64.tar.gz
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://developer.chrome.com/docs/chromedriver/downloads#chromedriver_1080535971
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md#Install-additional-build-dependencies
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md
https://www.chromium.org/developers/how-tos/get-the-code/working-with-release-branches/
https://www.chromium.org/developers/how-tos/get-the-code/working-with-release-branches/


1 export PATH="/mnt/build/depot_tools:$PATH"
2 cd /mnt/build/chromium/src/
3 gn args out/Default

6. After updating the contents of the args.gn file, run the
above command again to finalize the build preparations.

1 gn args out/Default

7. Build an unmodified Chrome and its Linux installer (this
may take a while depending on the host machine’s perfor-
mance).

1 ninja -C out/Default chrome
2 ninja -C out/Default "chrome/installer/

↪→ linux:unstable_deb"

8. Build a version of Chrome patched with the Arcanum
implementation (located in “∼/patches/” in the artifact
GitHub repository).

1 cd /mnt/build/chromium/src/
2 git apply ~/patches/chromium.patch
3 cd /mnt/build/chromium/src/v8/
4 git apply ~/patches/v8.patch
5
6 cd /mnt/build/chromium/src/
7 gn args out/Arcanum
8 cp out/Default/gn.args out/Arcanum/
9 gn args out/Arcanum

10 ninja -C out/Arcanum chrome

9. Build a Linux installer for Arcanum, you can then find the
.deb file in “../out/Arcanum/”.

1 ninja -C out/Arcanum "chrome/installer/
↪→ linux:unstable_deb"

2 cd /mnt/build/chromium/src/out/Arcanum/
3 ls chromium -browser -unstable_108

↪→ .0.5359.71 -1 _amd64.deb

A.3.2 Basic Test

Pull the provided Docker image for running Arcanum, and
then launch a Docker container from this image. Note that
the “--privileged” flag is required. You can also mount
any directory that is convenient for transferring files from the
host machine.

1 docker pull xqgtiti/arcanum_run:latest
2 docker run -it --privileged --name=run

↪→ xqgtiti/arcanum_run:latest

Copy the Arcanum installer file (i.e., the .deb file) to
“/root/Arcanum/” in the Docker container and decompress
it. Note that we use this path in the test case code as the
Arcanum executable path. Please modify the variable in the
code if you place the installer elsewhere.

1 cd /root/Arcanum/
2 ar x chromium -browser -unstable_108

↪→ .0.5359.71 -1 _amd64.deb
3 tar -vxf control.tar && tar -vxf data.tar

Run the basic test case Basic_Test.py from the artifact
GitHub repository in the interactive shell of the container,
using the pre-configured Python 3.8. The basic test case uses
Selenium to launch Arcanum (a modified Chromium) with an
empty extension pre-installed and navigates to a web page.

1 python3.8 ~/Test_Cases/Basic_Test.py

If Arcanum runs normally, you should see “Basic Test:
Success.” in the output.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The Functionality of Arcanum.
• Arcanum operates on the modern browser architec-

ture, as proven by the implementation patches for
Chromium 108.

• Arcanum supports both MV2 and MV3 extensions.
This is proven by experiment E1, where we test custom
extensions for both MV2 and MV3.

• Arcanum is able to track user sensitive data from
within web pages and support taint propagation across
a comprehensive set of browser, web, and JavaScript
APIs used by extensions. This is proven by both exper-
iments E1 and E2. In E1, we test custom extensions
that trigger different types of taint sources (including
chrome.history, document.location, etc.), taint
sinks (including Fetch, XMLHttpRequest, etc.), and
various propagation processes (including binary data
buffer propagation, Chrome message passing APIs,
etc.), as described in Section 3 of our paper. In E2, we
test real-world extensions covering more propagation
cases, such as the storage taint sink, literal creation for
compound JS types, JS Promise, etc.

• Arcanum produces detailed taint propagation logs.
This is proven by both experiments E1 and E2, where
the test case results are determined by whether the
expected content appears in the taint logs.

(C2): Arcanum Can Track Specific Web Page Content.
Arcanum allows researchers to instrument specific web
page elements as tainted at runtime via JS DOM anno-
tations. This is proven by both experiments E1 and E2,
where we annotate specific sensitive DOM elements on
seven target pages and test the extensions with these
annotations.

(C3): Our Experiments are Reproducible.
In deploying Arcanum, we are able to discover auto-
mated exfiltration of user data by real-world extensions



across seven popular websites. This is proven by exper-
iment E2 described in Section 4.5 and Section 4.10 of
our paper. Specifically, we provide all extensions dis-
cussed as case studies in Section 4.10 and those whose
IDs are listed in Table 7 of Section 4.5. Our test cases
evaluate whether Arcanum can successfully flag each
sample extension, identifying whether the extension col-
lects specific tainted page content on a target page and
propagates the information to a taint sink.

A.4.2 Experiments

(E1): [Test Custom Extensions] [1 human-hour]
Preparation: Use the same Docker container from the
Basic Test that has the Arcanum executable file placed
in “/root/Arcanum/”. Download all custom extensions
(in “∼/Sample_Extensions/Custom/”) from the ar-
tifact GitHub repository and copy the extensions to
“/root/extensions/custom/” in the container.

1 mkdir -p /root/extensions/custom/
2 cp -r ~/Sample_Extensions/Custom/* /root

↪→ /extensions/custom/

Download all recordings and JS scripts for DOM element
annotations from the artifact GitHub repository and place
them in the “/root/” directory in the container:

1 mkdir -p /root/recordings/
2 cp -r ~/recordings/* /root/recordings/
3 mkdir -p /root/annotations/
4 cp -r ~/annotations/* /root/annotations/

Execution: We have prepared a test case for each cus-
tom extension. Run these test cases in the container shell
using the pre-configured Python 3.8:

1 python3.8 ~/Test_Cases/Custom_Test.py

Each test case launches Arcanum with the correspond-
ing web recording and DOM element annotations (or
without annotations when testing non-web content taint
sources), and checks whether we successfully obtain the
expected content in the taint logs, demonstrating the cor-
rect taint tracking of Arcanum. You can test all custom
extensions together or test a specific extension by simply
commenting out other test cases in Custom_Test.py,
such as:

1 if __name__ == "__main__":
2 Amazon_Extension_MV2_Test()
3 # Amazon_Extension_MV3_Test()
4 # Facebook_Extension_MV2_Test()
5 ...
6 # Source_document_password_Test()
7 # Source_document_location_Test()
8 ...

Results: For each extension being tested, you should
see “Custom Extension ${Name}: Success.” in the test
case output, demonstrating the correct taint tracking of
Arcanum. You can refer to the test case code to see the
expected content in the taint logs for each extension.

(E2): [Test Real-world Extensions] [1 human-hour]
Preparation: Use the same Docker container from the
Basic Test that has the Arcanum executable file placed in
“/root/Arcanum/”. Download all real-world extensions
(in “∼/Sample_Extensions/Realworld/”) from the
artifact GitHub repository and copy the extensions to
“/root/extensions/realworld/” in the container.

1 mkdir -p /root/extensions/realworld/
2 cp -r ~/Sample_Extensions/Realworld/*

↪→ /root/extensions/realworld/

Execution: We have prepared a test case for each real-
world extension. Run these test cases in the container
shell using the pre-configured Python 3.8:

1 python3.8 ~/Test_Cases/Realworld_Test.py

Each test case launches Arcanum with the correspond-
ing web recording and DOM element annotations, and
checks whether we successfully obtain the expected con-
tent in the taint logs, aligning with the experiment re-
sults described in Sections 4.5 and 4.10. You can test
all real-world extensions together or test a specific ex-
tension by simply commenting out other test cases in
Realworld_Test.py, such as:

1 if __name__ == "__main__":
2 amfmnhcipnbjjnbfmaoooiohikifefk()
3 # haphbbhhknaonfloinidkcmadhfjoghc()
4 # dianbbpnakhcmfkcckaboohfgnngfcc()
5 ...

Results: For each extension being tested, you should
see “Real-world Extension ${ID}: Success.” in the test
case output. You can refer to the test case code to see the
expected content in the taint logs for each extension.
We also release all taint logs (i.e., analysis results gener-
ated by Arcanum) for each real-world extension obtained
from the experiments conducted in our paper. Please
check these logs located in ∼/Taint_Logs/ in the arti-
fact GitHub repository.

A.5 Notes on Reusability
• Arcanum’s taint source logs, propagation logs, and the stor-

age sink logs are located in “/ram/analysis/v8logs/”.
All other taint sink logs are in the specified user data direc-
tory of Chromium.

• When testing Arcanum with Docker, ensure to allocate
sufficient CPU resources (4 logical processors or more),



especially when running multiple containers in paral-
lel (e.g., using “--cpus=4 --cpuset-cpus=0-3”). Use
“--cpuset-cpus” to specify CPUs in scenarios where pre-
emption may occur.

• As described in Section 3.4 in the paper, we intro-
duce a forced delay in Arcanum to ensure that a tar-
get web page will fully load before an extension in-
jects its content script. We configure this delay as a
Chrome switch “--custom-script-idle-timeout-ms”
and “--custom-delay-for-animation-ms”. Users can
set a specific delay when recording and replaying different
web pages according to their page loading times. Please re-
fer to the provided test cases for examples of its usage. The
test cases were evaluated on a Linux server with 8 CPUs
and 16 GiB of RAM. If you are testing with fewer CPU
resources, please consider increasing the value of the two
switches mentioned above in the test case scripts.

• Please see the README file in our GitHub repository for
future updates.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


