
USENIX Security ’24 Artifact Appendix: YPIR: High-Throughput
Single-Server PIR with Silent Preprocessing

Samir Jordan Menon
Blyss

David J. Wu
UT Austin

A Artifact Appendix

A.1 Abstract
We implement YPIR (from Section 3) and YPIR+SP (from
Section 4.3) in a single open-source Rust library. We provide
a benchmarking binary that runs a YPIR client and server, and
outputs the server runtime and the query and response sizes.

A.2 Description & Requirements
A.2.1 Security, Privacy, and Ethical Concerns

Our implementation is not production-ready.

A.2.2 How to Access

The implementation is available at https://github.com/
menonsamir/ypir/tree/b980152. The permanent DOI is
https://doi.org/10.5281/zenodo.13117988.

A.2.3 Hardware Dependencies

The recommended hardware platform is an AWS
r6i.16xlarge machine. The implementation should
run well on any machine with a modern server CPU that sup-
ports AVX-512. The implementation will run with reduced
performance on machines without AVX-512 support1. The
YPIR experiments described here require 64 GB of memory
and the HintlessPIR experiments require 512 GB.

A.2.4 Software Dependencies

We provide a self-contained Docker image at https://
ghcr.io/menonsamir/ypir:latest.2 Building the code
directly requires Rust and a C/C++ compiler. The
rust-toolchain.toml file fixes the Rust compiler version
to nightly-2024-02-07, and standard Rust installations will
automatically download and use this compiler version. The
code was tested on Ubuntu 22.04.
1Add --features server to cargo build commands to build without
AVX-512.

2The permanent URL for the specific Docker image used for
this evaluation is https://ghcr.io/menonsamir/ypir@sha256:

cf41936974074679bc3f08b582a8417b65cd957aa5d716a1daca61fd2d365006.

A.2.5 Benchmarks

None.

A.3 Set-up

In Ubuntu 22.04, install Docker and GCC 11.

A.3.1 Installation

No installation step is required (beyond installing Docker).

A.3.2 Basic Test

The basic test can be run using the command: sudo docker
run --security-opt seccomp:unconfined --cpus=1
ghcr.io/menonsamir/ypir:latest 2147483648 1.
This downloads the Docker container and runs it. The
arguments correspond to running YPIR on a 256 MB
database with 231 1-bit entries. We provide more details
about the basic test in evaluation.md.

A.4 Evaluation Workflow

A.4.1 Major Claims

We make a major claim for each key figure and table in Sec-
tion 4 of our paper.
(C1): For retrieving a single bit from an 8 GB database, YPIR

achieves roughly 50% higher throughput, similar (within
10%) query size, and over 100× reduction in response
size compared to HintlessPIR. This is an outcome of
experiment (E1), whose results are presented in Table 1.

(C2): For retrieving a single bit from a 32 GB database,
YPIR has slightly (within 5%) lower throughput, 50%
larger query size, and the same response size as Dou-
blePIR* (our DoublePIR implementation). Moreover,
YPIR spends less than 5% of its server time on the LWE-
to-RLWE translation. This is an outcome of experiment
(E2), whose results are presented in Fig. 2 and Table 2.3

3The query and response sizes for DoublePIR* are included in Table 8 of the
full version of this paper.

https://github.com/menonsamir/ypir/tree/b980152
https://github.com/menonsamir/ypir/tree/b980152
https://doi.org/10.5281/zenodo.13117988
https://ghcr.io/menonsamir/ypir:latest
https://ghcr.io/menonsamir/ypir:latest
https://ghcr.io/menonsamir/ypir@sha256:cf41936974074679bc3f08b582a8417b65cd957aa5d716a1daca61fd2d365006
https://ghcr.io/menonsamir/ypir@sha256:cf41936974074679bc3f08b582a8417b65cd957aa5d716a1daca61fd2d365006
https://docs.docker.com/engine/install/ubuntu/
https://github.com/menonsamir/ypir/blob/artifact/evaluation.md


(C3): When considering cross-client batching with 4 clients
and a 32 GB database, YPIR achieves up to a 40% in-
crease in effective throughput. This is an outcome of
experiment (E3), whose results are presented in Fig. 3.

(C4): For retrieving a 32-KB record from an 8 GB database,
YPIR+SP achieves similar (within 10%) server through-
put, similar (within 10%) query size, and over 5× reduc-
tion in response size compared to HintlessPIR. This is an
outcome of experiment (E4), whose results are presented
in Table 5.

A.4.2 Experiments

In the following commands, we use $YPIR to
refer to the command prefix sudo docker run
--security-opt seccomp:unconfined --cpus=1
-it ghcr.io/menonsamir/ypir:latest. Similarly,
we use $HINTLESSPIR to refer to sudo docker run
--security-opt seccomp:unconfined --cpus=1 -it
ghcr.io/menonsamir/hintlesspir:latest. We measure
the server computation time of YPIR averaged over 5 trials.4

(E1): [15 human-minutes + 2 compute-hours]: Runs YPIR
and HintlessPIR to retrieve a bit from an 8 GB database.
Preparation: Run sudo docker image pull
ghcr.io/menonsamir/hintlesspir to pre-download
a Docker image for HintlessPIR we have created. The
build specification for this container is available in
hintlesspir-patch.patch.
Execution: Run YPIR with $YPIR 68719476736 1,
and save the final “Measurement” output (15 minutes).
Then, run HintlessPIR with $HINTLESSPIR 8GB (1.5
hours). Note the final value under “Time” in nanosec-
onds, and confirm that “Iterations” is 1.
Results: The throughput of each scheme is the database
size in GB (8 in this case) divided by the server com-
putation time in seconds. The server computation time
for YPIR is in milliseconds in the measurement data
in online under server_time_ms. Ensure you are us-
ing the server_time_ms value from the online sec-
tion of the measurement data. The query and response
sizes for YPIR are also in the online section, under
upload_bytes and download_bytes, respectively. The
HintlessPIR server computation time is reported under
“Time”, in nanoseconds. The HintlessPIR implementa-
tion does not output query and response sizes by default,
so we use Lemma 7 from the HintlessPIR paper to cal-
culate these in hintlesspir-notes.md.
Expected: YPIR should have a throughput of about
11 GB/s, and HintlessPIR should have a throughput of
about 4.9 GB/s. Query and response sizes should match
Table 1.

4Because HintlessPIR runs take longer (generally hours), we only run a single
trial for these experiments. This does not appear to impact measurements
significantly.

(E2): [30 human-minutes + 1 compute-hour]: Runs YPIR
and DoublePIR* to retrieve a bit from a 32 GB database.
Execution: Run $YPIR 274877906944 1.
Results: Compute the throughput and query and
response size for YPIR as in (E1). For Dou-
blePIR*, the server response time (in millisec-
onds) is the sum of first_pass_time_ms and
second_pass_time_ms from the online section
of the measurement. The query and response sizes
for DoublePIR* are doublepir_query_bytes and
doublepir_resp_bytes. The fraction of the YPIR
server computation time for performing LWE-
to-RLWE is ring_packing_time_ms divided by
server_time_ms.
Expected: YPIR and DoublePIR* should have a
throughput of about 12 GB/s. Query and response sizes
should match Table 8 of the full version of this paper.

(E3): [15 human-minutes + 1 compute-hour]: Runs YPIR
with cross-client batching across 4 clients.
Execution: Run $YPIR 274877906944 1 4.
Results: The effective throughput is the product of the
number of clients (4) by the database size in GB (32
GB), divided by the server computation time in seconds.
Expected: YPIR with cross-client batching across 4
clients should achieve an effective throughput of roughly
16 GB/s.

(E4): [30 human-minutes + 1 compute-hour]: Runs
YPIR+SP and HintlessPIR to retrieve a 32 KB record
from a 8 GB database.
Execution: Run YPIR+SP with $YPIR 131072
524288 --is-simplepir. Then, run HintlessPIR with
$HINTLESSPIR 8GB.
Results: Compute the throughput and query and re-
sponse sizes of each scheme as in (E1).
Expected: YPIR+SP and HintlessPIR should have a
throughput of roughly 4.9 GB/s, and query and response
sizes should match Table 5.

A.5 Notes on Reusability
The YPIR implementation is a Rust crate that can be reused
by an existing Rust project by running cargo add --git
"https://github.com/menonsamir/ypir.git". The im-
plementation can also be compiled to WebAssembly and
run directly in a webpage. A demo of YPIR for retrieval of
breached passwords in in the demo/ folder of the repository.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://github.com/menonsamir/ypir/blob/artifact/rodeo/data/extra/hintlesspir-patch.patch
https://eprint.iacr.org/2023/1733.pdf
https://github.com/menonsamir/ypir/blob/artifact/rodeo/data/extra/hintlesspir-notes.md
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


