
USENIX Security ’24 Artifact Appendix: DVa: Extracting Victims and
Abuse Vectors from Android Accessibility Malware

Haichuan Xu1, Mingxuan Yao1, Runze Zhang1, Mohamed Moustafa Dawoud2,
Jeman Park3, Brendan Saltaformaggio1

1Georgia Institute of Technology 2German International University 3Kyung Hee University

A Artifact Appendix

A.1 Abstract

The artifact is a code repository (with supporting documenta-
tion) for DVa, an automated symbolic execution pipeline used
to perform analysis of Android accessibility (a11y) malware.
DVa’s major component is the static symbolic execution of a
malware APK that outputs the malware’s targeting victims,
abuse vectors, and persistent mechanisms. DVa also consists
of peripheral dynamic hooking and analysis code that com-
bats malware’s anti-analysis techniques to aid the loading of
malicious payloads.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Due to the unique nature of malware analysis, DVa is designed
to interact with malware actively and its potentially live C&C
servers while revealing user-side environmental and victim
app information to the malware. This is necessary to combat
malware’s anti-analysis techniques such as packing, dynamic
code loading, and victim app scanning to aid in revealing mal-
ware’s abuse payloads. However, for the artifact evaluation,
we have prepared the malware sample in a way that should
not pose any inherent security, privacy, or ethical concerns
while obtaining the major claims of the paper. In specific, no
analysis is performed to transmit data with malware’s live
C&C servers. If the user decides to run active malware to
verify DVa’s claims, they do so at their own risk.

A.2.2 How to access

The artifact is a stable reference to a tree with a doc-
umented tutorial that can be accessed on GitHub:
https://github.com/CyFI-Lab-Public/DVa/tree/
623337245d2588a6b87bc9bb7791497c4251d787. We also
included a compiled executable JAR file with dependencies
to ease the setup of static symbolic execution.

A.2.3 Hardware dependencies

DVa’s static symbolic execution requires a Linux machine.
The framework was tested on a Ubuntu 20.04.6 LTS machine
with a 24-core CPU and 128GB Memory. However, DVa
should work with any recent version of Ubuntu or any Debian
11 and up (64-bit) machines.

DVa’s peripheral dynamic analysis and hooking framework
requires physical Google Pixel 3 phones (with OEM unlock).
To maximize the chance of creating a valid execution envi-
ronment of malware, DVa uses five physical Google Pixel
3 phones to execute the dynamic analysis. The phones run
patched version of Android 9 blueline images with version
image-blueline-pq1a.181105.017.a1.

A.2.4 Software dependencies

DVa’s symbolic execution is built on top of Soot. Software de-
pendency for running the compiled JAR version of DVa is the
OpenJDK version 1.8.0_412 with Java Runtime Environment.

DVa relies on adb, python 3.10.12, Magisk, and EdXposed
to run the dynamic hooking framework. For details, please
refer to the ROM flash and dynamic hooking framework in-
stallation instructions in the GitHub repository.

A.2.5 Benchmarks

The primary benchmark used in the paper is a collec-
tion of Android a11y malware (malware that requests the
BIND_ACCESSIBILITY_SERVICE permission) collected from
VirusTotal Intelligence. This dataset is used to examine DVa’s
effectiveness in detecting a11y malware’s targeting victims,
abuse vectors, and persistence mechanisms. The benchmark
was run on a Ubuntu 20.04.6 LTS system with DVa deployed.
The results are shown in Tables 5 and 6 of the paper.

A.3 Set-up
A.3.1 Installation

Users should follow the Setup section of the README to
deploy DVa. Install Java 1.8 by running sudo apt install
openjdk-8-jdk.

https://github.com/CyFI-Lab-Public/DVa/tree/623337245d2588a6b87bc9bb7791497c4251d787
https://github.com/CyFI-Lab-Public/DVa/tree/623337245d2588a6b87bc9bb7791497c4251d787

A.3.2 Basic Test

The Usage section of the README contains a step-by-step
instruction to run DVa against malware Pixstealer, an An-
droid a11y malware that eavesdrops on user credentials and
conducts automated unauthorized transactions abusing bank-
ing applications. In short, to use the compiled JAR with all
dependencies packaged, the user should:

1. cd to DVa’s directory.

2. Run DVa’s malware analysis module against
the malware by executing java -jar
static_analysis/static_analysis.jar
samples/Pixstealer.apk $OUTPUT_PATH.

3. Retrieve the malware analysis report at
$OUTPUT_PATH/Pixstealer.json.

To avoid the possible security and privacy risks, we ver-
ified that the C&C servers the sample communicates with
have been mitigated. The malware APK already contains
C&C-loaded payloads that DVa’s dynamic hooking frame-
work extracted when the servers were live.

Running DVa against Pixstealer covers all three major mal-
ware analysis tasks claimed in the paper, namely detecting
a11y malware’s targeting victims, abuse vectors, and persis-
tence mechanisms. The output should reveal:

1. Victim targets of the malware. This is organized as the
package names of the victim apps or the system service
that the malware targets. The victim target is shown un-
der the "victim" key in the output JSON file together with
its corresponding abuse vectors or persistence mecha-
nisms. For the Pixstealer malware, you will see it targets
the system "settings" app with multiple persistence mech-
anisms, the Nubank (com.nu.production), and the In-
ter&Co Financial APP (br.com.intermedium) apps with
multiple abuse vectors.

2. Abuse vectors of the malware. This is shown under the
"Abuse Vectors" key of the report and labeled as one of
the a11y abuse vectors the malware uses to abuse each
victim. Each abuse vector is accompanied by the con-
crete data-flow that leads to the execution of the vector.
The vectors are all initiated from accessibility handlers
of the malware and end with concrete a11y APIs. For
the Pixstealer malware, you will see that it "steals cre-
dentials", and conducts "automated transactions".

3. Persistence mechanisms of the malware. This is shown
under the "Persistence Mechanisms" key of the report
and contains one of the a11y persistence mechanisms
the malware adopts to hinder the user’s removal of the
malware. Each mechanism is accompanied by traces of
the mechanism triggers. For the Pixstealer malware, it
prevents the a11y permission revocation and prevents
info look-up or uninstalling the malware.

A.4 Evaluation workflow
This subsection illustrates the major malware analysis results
claimed in the paper. However, we are unable to release the
malware dataset utilized in our research at this time due to
ethical considerations. Consequently, users are required to
obtain their own malware dataset for analysis.

A.4.1 Major Claims

(C1): DVa is able to identify 215 victim apps spanning
seven categories abused by 4,291 Android a11y mal-
ware samples across 65 families. Banking apps are the
most widely targeted category. This is proven by exper-
iment 1 (E1) described in Section 5.1 of the paper and
illustrated in Table 5.

(C2): DVa is able to extract seven categories of abuse vec-
tors from a11y malware with an average of 13.9 vectors
targeting each victim app. The most frequently adopted
abuse vectors are Steal Credentials and Auto Transac-
tion across most categories of victims. This is proven by
experiment 2 (E2) described in Section 5.2 of the paper
and illustrated in Table 5.

(C3): DVa is able to extract six categories of a11y-
empowered persistence mechanisms from a11y mal-
ware. Most malware abuses a11y to prevent users from
revoking a11y permission, looking up malware info /
uninstalling malware, and disabling Google Play Protect.
This is proven by experiment 3 (E3) described in Section
5.3 of the paper and illustrated in Table 6.

A.4.2 Experiments

(E1): [2 human-days + 14 compute-days + 200GB storage]:
Execute DVa on a large scale to detect targeting victims
of Android a11y malware.
Preparation: Collect Android a11y malware from on-
line resources. To ensure an unbiased dataset, users
should collect Android malware that requires accessi-
bility permission randomly and across different malware
families. Query the sample hashes against malware in-
telligence services to confirm their maliciousness and
obtain malware family labels. Install the malware and
run DVa’s dynamic hooking framework on real Google
Pixel 3 phones to aid the unpacking and loading of dy-
namic abuse payloads.
Execution: Run DVa’s static symbolic execution com-
ponent to extract targeting victims of the malware re-
solved by solving constraints to the execution of abuse
vectors.
Results: DVa should output the package name of the
victim Android applications the malware targets.

(E2): [2 human-days + 14 compute-days + 200GB storage]:
Execute DVa on a large scale to detect abuse vectors of
Android a11y malware.

Preparation: Collect Android a11y malware as de-
scribed in E1.
Execution: Run DVa’s static symbolic execution com-
ponent to extract abuse vectors targeting victim appli-
cations. The abuse vectors are resolved by valid API
sequence data-flows from the Android accessibility han-
dler to a11y actions.
Results: DVa should output abuse vectors with which
the malware targets each victim and a detailed data-flow
path that constitutes the vector.

(E3): [1 human-days + 10 compute-days + 100GB storage]:
Execute DVa on a large scale to detect persistence mech-
anisms of Android a11y malware.
Preparation: Collect Android a11y malware as de-
scribed in E1.
Execution: Run DVa’s static symbolic execution com-
ponent as well as the dynamic hooking framework to ex-
tract a11y-empowered persistence mechanisms. The per-
sistence mechanisms are resolved as valid API data-flow
from the Android accessibility handler to a11y global
action APIs with persistence mechanism triggers solved
as constraints. They are also resolved as captured hooked
a11y global action API calls after initiating the persis-
tence mechanism triggers.
Results: DVa should output the a11y-empowered per-
sistence mechanisms the malware uses.

A.5 Notes on Reusability
DVa has multiple scripts and components that can be utilized
or extended to other Android malware analysis tasks. We list
some examples below.

• A11yConstraints.java: A customizable script to
detect a11y abuse vectors and resolving constraints. Can
be extended to detect new abuse vectors when they are
discovered.

• dynamicManager.py: A generic script that manages
the execution of malware across multiple physical An-
droid devices.

• singleDeviceManager.py: A generic and cus-
tomizable script that utilizes adb to conduct multiple
dynamic malware management tasks such as clearing
device state, installing malware, querying a11y service
info, initializing malware, granting permissions, unin-
stalling malware, etc. Users can easily insert or delete
procedures that best suit their malware analysis tasks.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

