
USENIX Security ’24 Artifact Appendix: Spider-Scents: Grey-box
Database-aware Web Scanning for Stored XSS

Eric Olsson
Chalmers University of Technology

Benjamin Eriksson
Chalmers University of Technology

Adam Doupé
Arizona State University

Andrei Sabelfeld
Chalmers University of Technology

A Artifact Appendix

A.1 Abstract
This artifact includes source code of the prototype imple-
mentation of our database-aware grey-box scanner for stored
XSS, as well as Docker Compose setups for a subset of the
evaluated web applications.

Running the scanner against a web application will produce
a mapping from database columns to unprotected outputs
where XSS payloads are executed. These unprotected outputs
are code smells that correspond to either dormant stored XSS
or stored XSS vulnerabilities.

Manual analysis is required to determine the vulnerability
and exploitability of unprotected outputs.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no additional risks for reviewers, other than those
already encountered when scanning a web application for
vulnerabilities; i.e. running an insecure web application.

All vulnerabilities found, including those in the web appli-
cations included in this artifact, have been responsibly dis-
closed to the affected vendors.

A.2.2 How to access

Download the artifact from https://github.com/
Spider-Scents/dbfuzz/releases/tag/v0.3.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

The scanner is implemented as a Python script, which
uses a mysql connection to the database, and Chrome and
Chromedriver to interact with the web application.

Python dependencies are included in the Pipfile of the arti-
fact.

Docker and Docker Compose are used to set up the web
applications.

mysqldump and mysql commands are used to automatically
backup and restore the web application database.

graphviz is used to produce graph visuals.
Chrome/Chromedriver, Docker/Docker Compose, mysql-

dump/mysql, and graphviz need to be manually installed,
while the Pipfile can be used to install required Python depen-
dencies.

Python dependencies include:
• mysql-connector-python to connect to the database.
• requests to get pages from the web application
• selenium to browse the web application.
• tqdm to show a progress-bar.
• graphviz to produce graph visuals.
• cssutils, beautifulsoup4, and defusedxml to parse

CSS, HTML, and XML.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Download the artifact from https://github.com/
Spider-Scents/dbfuzz/releases/tag/v0.3.
Follow the instructions in the README; namely:
Install Python 3.10.
Install MariaDB or MySQL to provide the mysql and
mysqldump commands.
Install the Chrome browser and Chromedriver.
Install Graphviz.
Install Docker and Docker Compose.
Install the Python environment with pipenv install.

https://github.com/Spider-Scents/dbfuzz/releases/tag/v0.3
https://github.com/Spider-Scents/dbfuzz/releases/tag/v0.3
https://github.com/Spider-Scents/dbfuzz/releases/tag/v0.3
https://github.com/Spider-Scents/dbfuzz/releases/tag/v0.3


A.3.2 Basic Test

Unzip the Doctor Appointment Management System web
application at docker/doctor. Inside the extracted con-
tents, correct the permissions of the served Apache directory
dbfuzz with:

chmod 755 d b fu zz

Start the web application with:

d oc ke r compose up −− b u i l d

Restore the provided database file in docker/doctor
through the PhpMyAdmin console at http://localhost:
8080/ with server:mariadb, username:root, and
password:notSecureChangeMe

Copy the provided config_doctor.ini to the root of the
repository.

Update the cookies in the config file to allow the initial URL
crawler to access authenticated pages, if necessary. Update
the location of mysql and mysqldump, if necessary.

Run the script once to get crawl for webpage URLs with:

p i pe nv run s c r i p t −− c o n f i g
c o n f i g _ d o c t o r . i n i −− i n s e r t −empty
−− r e s e t − f u z z i n g −− r e s e t −

s c a n n i n g −− s e n s i t i v e − rows −−
pr imary − keys −− t r a v e r s a l column

Though inapplicable to this application, the script stops
at this point to prompt the user to manually remove any de-
structive URLs from the generated URL file urls doctor
app_config.insert_empty=True.txt

Run the previous pipenv run script command as be-
fore to finish scanning the web application.

Mappings from database inputs to unprotected outputs in
this web application should be generated in PDF and CSV
form in the output folder.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Spider-Scents automatically finds unprotected outputs
from the database of web applications. This claim is
supported by experiment E1 described in Paper Section
5 whose results are included in Paper Table 1.

(C2): Spider-Scents has high coverage of database fields
that can possibly contain XSS payloads. This claim is
supported by experiment E2 described in Paper Section
5.3 whose results are illustrated in Paper Figure 5.

(C3): Unprotected outputs found by Spider-Scents are related
to stored-XSS vulnerabilities and exploits. This claim is
supported by experiment E3 described in Paper Section 5
whose results are illustrated in Paper Table 1 and Paper
Table 2.

Table 1: Unprotected outputs in Doctor Apt.

Column

tblappointment.Email
tblappointment.Name
tbldoctor.Email
tbldoctor.FullName
tblspecialization.Specialization
tblpage.Timing
tblpage.PageDescription
tblpage.Email

A.4.2 Experiments

(E1): Scan Doctor Apt.[10 human-minutes + 10 compute-
minutes]: Scan the Doctor Appointment Management
System for unprotected outputs.
Preparation: Set up the Doctor Apt. web application.
Execution: Run the scanner script with the evaluation
parameters on the Doctor Apt. web application.
Results: The script will have generated the mapping
of database inputs to unprotected outputs in the web
application. These are in output/graph doctor.pdf
and output/reflections doctor.csv
The eight unprotected outputs in Table 1 should be
present in the results.

(E2): Doctor Apt. DB Coverage[5 human-minutes + 10
compute-minutes]: Scanning the Doctor Appointment
Management System has high database coverage.
Preparation: Set up the Doctor Apt. web application.
Skip if experiment E1 already has been run.
Execution: Run the scanner script with the evaluation
parameters on the Doctor Apt. web application. Skip if
experiment E1 already has been run.
Results: The script will have generated a summary of
database coverage in output/coverage doctor.csv
This summary should reflect that all 16 columns that
could possibly contain an XSS payload string are tested
by the scanner.
Note that this summary shows information about all
string-type columns in the database; some may be too
short to hold any XSS payload.

(E3): Doctor Apt. Vulnerabilities[20 human-minutes + 10
compute-minutes]: Unprotected outputs in the Doctor
Appointment Management System are related to stored
XSS vulnerabilities.
Preparation: Set up the Doctor Apt. web application.
Skip if experiment E1 already has been run.
Execution: Run the scanner script with the evaluation
parameters on the Doctor Apt. web application. Skip if
experiment E1 already has been run.
Results: The script will have generated the mapping of

http://localhost:8080/
http://localhost:8080/


Table 2: Vulnerabilities (V) and Exploits (E) in the Doctor
Appointment Management System

Column Input Protection V E

tblappointment.Email none true true
tblappointment.Name none true true
tbldoctor.Email none true false
tbldoctor.FullName none true false
tblspecialization.Specialization no input false false
tblpage.Timing no input false false
tblpage.PageDescription no input false false
tblpage.Email no input false false

database inputs to unprotected outputs in output/graph
doctor.pdf and output/reflections doctor.csv
Manual analysis of code relating to the database fields
from unprotected outputs will show that four of these
are vulnerable, while the remaining four do not have any
input.
Furthermore, two of these vulnerabilities are directly
exploitable given the permission system (users can per-
form XSS on doctors), while the remaining two represent
doctor self-XSS.
These findings correspond to Table 2.

A.5 Notes on Reusability
A.5.1 Other web applications

In addition to the detailed description of how to run our ex-
periments on the Doctor Appointment Management System,
we also provide setups and expected results for other web
applications used in our evaluation in the artifact.

With these, an interested reviewer can run experiments E1
and E2 for these other web applications.

Table 3 lists all Docker packaged web applications in the
artifact. Compute time will vary for running scans on these
applications, refer to Table 4 and Paper Table 3 for guidance.

A.5.2 Docker performance

Packaging web applications as Docker containers prioritizes
the ease-of-use and portability of this artifact, at the expense
of its performance.

Web application performance has the largest impact on
runtime for this scanner; we observe an overall 18% improve-
ment in runtime by simply running a number of the evaluated
applications natively, outside of Docker - see Table 4.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-

Table 3: Docker-packaged web applications used in the evalu-
ation

Application Date Version Location

CMSMS 2022 2.2.16 docker/cmsms
Doctor Apt. 2023 2023/1/11 docker/doctor
Hospital 2022 2022/11/8 docker/hospital
Hostel 2021 2021/9/30 docker/hostel
Joomla 2023 4.2.8 docker/joomla
MyBB 2023 1.8.33 docker/mybb
OpenCart 2023 4.0.1.1 docker/opencart
Piwigo 2023 13.6.0 docker/piwigo
User Login 2021 V3 docker/userlogin
WordPress 2023 6.1.1 docker/wordpress

Table 4: Runtime performance of Spider-Scents, Docker (D)
vs. Native (N).

Web application Scan time (D) Scan time (N) Improvement

Doctor Apt. 0:10 0:08 20%
Hospital 0:31 0:22 29%
Hostel 0:13 0:13 0%
MyBB 6:06 4:21 29%
OpenCart 4:29 1:39 63%
Piwigo 0:59 1:07 -14%
PrestaShop 38:39 32:29 16%
User Login 0:02 0:01 50%
WordPress 2:22 1:55 19%

Overall 51:31 42:15 18%

ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Other web applications
	Docker performance

	Version


