
USENIX Security ’24 Artifact Appendix: Unveiling IoT Security in
Reality: A Firmware-Centric Journey

Nicolas Nino*

University of Georgia
Ruibo Lu*, Wei Zhou

Huazhong University of Science and Technology
Kyu Hyung Lee

University of Georgia

Ziming Zhao
Northeastern University

Le Guan
University of Georgia

A Artifact Appendix

A.1 Abstract
To study the security properties of the Internet of Things
(IoT), firmware analysis is crucial. In the past, many works
have been focused on analyzing Linux-based firmware. Less
known is the security landscape of MCU-based IoT devices,
an essential portion of the IoT ecosystem. Existing works
on MCU firmware analysis either leverage the companion
mobile apps to infer the security properties of the firmware
(thus unable to collect low-level properties) or rely on small-
scale firmware datasets collected in ad-hoc ways (thus cannot
be generalized). To fill this gap, we create a large dataset of
MCU firmware for real IoT devices. Our approach statically
analyzes how MCU firmware is distributed and then captures
the firmware. To reliably recognize the firmware, we develop
a firmware signature database, which can match the footprints
left in the firmware compilation and packing process. In total,
we obtained 8,432 confirmed firmware images (3,692 unique)
covering at least 11 chip vendors across 7 known architectures
and 2 proprietary architectures. We also conducted a series of
static analyses to assess the security properties of this dataset.
The result reveals three disconcerting facts: 1) the lack of
firmware protection, 2) the existence of N-day vulnerabilities,
and 3) the rare adoption of security mitigation.

A.2 Description & Requirements
This section provides all the information necessary to recreate
the same experimental setup to run the artifact. Our artifact
includes 1) tools to analyze Android APKs to extract URLs
for OTA firmware update; 2) tools to extract Android APKs
for candidate firmware; 3) an LLM-powered crawler to down-
load candidate firmware from OTA URLs; 4) a pipeline to
validate firmware and extract firmware metadata; 5) a dataset
of 3,692 firmware images that were collected using the tools
above; 6) firmware analysis tools to detect security defects in
the collected firmware.

As discussed in the paper, releasing the firmware dataset
poses potential risks, including copyright infringement and

misuse. Therefore, only the tools will be released. The
firmware dataset is only provided temporarily during the AE
process and will be deleted afterwards.

A.2.1 How to access

The artifact can be downloaded from the GitHub
repo publicly available at https://github.com/MCUSec/
RealworldFirmware/releases/tag/usenixae.

A.2.2 Hardware dependencies

A machine with an x86-64 CPU and at least 24 GB of memory
and 60 GB of free storage is recommended.

A.2.3 Software dependencies

A Linux environment is needed. While all major distributions
should be supported, we recommend Ubuntu ≥ 20.04. Our
artifacts have been tested on Ubuntu 22.04 LTS. For module
specific dependencies please refer to §A.3.

A.2.4 Benchmarks

• APK dataset: A CSV file containing the names and SHA
values of the 40,675 APKs used in our experiments.

• Test dataset: Since it is impractical to run our tools
against all 40,675 APKs, we selected 20 sample APKs
in the folder apk-dataset for testing.

• Firmware dataset: The 3,692 firmware images
collected in our experiments. It can be down-
loaded from https://drive.google.com/file/d/
1b0gr-5a7ICIvpylGSNf-Xp3m_dLfmRy2/view?usp=
sharing. We will delete it after the AE process.

A.3 Set-up
This section describes the steps to set up the experiment envi-
ronment, assuming a fresh Ubuntu 22.04 installation.

https://github.com/MCUSec/RealworldFirmware/releases/tag/usenixae
https://github.com/MCUSec/RealworldFirmware/releases/tag/usenixae
https://drive.google.com/file/d/1b0gr-5a7ICIvpylGSNf-Xp3m_dLfmRy2/view?usp=sharing
https://drive.google.com/file/d/1b0gr-5a7ICIvpylGSNf-Xp3m_dLfmRy2/view?usp=sharing
https://drive.google.com/file/d/1b0gr-5a7ICIvpylGSNf-Xp3m_dLfmRy2/view?usp=sharing

A.3.1 Installation

Install general software dependencies:
• sudo add-apt-repository ppa:deadsnakes/ppa
• sudo apt -y update
• sudo apt install -y openjdk-11-jdk
openjdk-17-jdk python3.11 python3-pip curl
z3 unzip rsync

• pip3 install --upgrade pip

Clone the artifact folder from Github. Set the project root di-
rectory to the location where the artifact was cloned: export
PROJECT_FOLDER=/home/<USER>/RealworldFirmware.
Then, enter the project folder: cd $PROJECT_FOLDER.

Install apktool for disassembling the APKs: sudo
./install_apktool.sh.

The folder $PROJECT_FOLDER/otacap contains URL analy-
sis tool. It depends on the Z3 solver.

1. mv otacap/VSA/build/dependencies/libz3java.so
/usr/lib/x86_64-linux-gnu/jni/

2. mv otacap/VSA/build/dependencies/libz3.so
/usr/lib/x86_64-linux-gnu/jni/

In folder $PROJECT_FOLDER/FirmXRay, we have a
customized FirmXRay. Add the ghidra.jar file,
found in https://drive.google.com/file/d/
1emNNUBO61lLMdDBbVeI8z5NCdl5GypsG/view?usp=
sharing to $PROJECT_FOLDER/FirmXRay/lib/. To build
it, run cd $PROJECT_FOLDER/FirmXRay && make.

In folder $PROJECT_FOLDER/binwalk, we have a customized
binwalk. To set up its dependencies and install it:

1. cd $PROJECT_FOLDER/binwalk
2. Install dependencies:

pip3 install -r requirements.txt && sudo
pip3 install protobuf==3.6.1

3. Install binwalk: python3 setup.py install

Install Ollama with llama3:
1. curl -fsSL https://ollama.com/install.sh |

sh
2. ollama serve &
3. ollama pull llama3
4. pip3 install ollama==0.2.0

In folder $PROJECT_FOLDER/crawler, we have the Crawler.
To set up its dependencies:

1. cd $PROJECT_FOLDER/crawler
2. Install scrapy: pip3 install scrapy==2.11.2
3. In crawler/httpftp/source/settings.py,

modify the field FILES_STORE to
$PROJECT_FOLDER/crawler/httpftp/results/files.
Note that $PROJECT_FOLDER must be replaced with the
real path.

Folder $PROJECT_FOLDER/FirmFlaw contains the binary
analysis tool. To set up its dependencies:

1. chmod 1777 /tmp
2. cd $PROJECT_FOLDER/FirmFlaw
3. mkdir logs res db fidb ghidra_projects

firmwares
4. Install pyhidra: pip3 install pyhidra==1.2.0
5. curl -L -O https://github.com/

NationalSecurityAgency/ghidra/releases/
download/Ghidra_11.1_build/ghidra_11.1_
PUBLIC_20240607.zip

6. unzip ghidra_11.1_PUBLIC_20240607.zip
7. export GHIDRA_INSTALL_DIR=

$PROJECT_FOLDER/FirmFlaw/ghidra_11.1_PUBLIC

A.3.2 Basic Test

[OTACap] Extracting OTA URLs from APKs.
1. cd $PROJECT_FOLDER/otacap/VSA
2. ./gradlew build -Dorg.gradle.java.home=

/usr/lib/jvm/java-11-openjdk-amd64/
3. cd .. && java -Xms5g -Xmx16g -jar

VSA/build/libs/IoTScope-1.0-SNAPSHOT-all.jar
-d config/combined.json -p
../Android/Sdk/platforms/ -o
./output-jsons/ -t config/taintrules.json
-a ../apk-dataset/com.brocel.gdb -dj
dex_tools_2.1/d2j-dex2jar.sh

OTACap should output a JSON file for the APK to
otacap/output-jsons. It contains the reconstructed URLs
along with some metadata.
[bin-unpack] Extracting firmware from APKs.

1. cd $PROJECT_FOLDER/bin-unpack
2. python3 decompress-apks.py
3. chmod +x ./extract-binaries.sh &&

./extract-binaries.sh
It should extract APKs in apk-dataset

and copy the found firmware images to
$PROJECT_FOLDER/bin-unpack/fw_images.
[FirmProcessing] Pipeline to recognize firmware and extract
metadata.

1. cd $PROJECT_FOLDER/FirmProcessing
2. sudo python3 run_step1_convert2bin.py
3. python3 run_step2_binsorter.py
--enable-firmxray

The script run_step1_convert2bin.py takes in can-
didate images in FirmProcessing/originals and de-
codes them. The results are stored in the folder
FirmProcessing/step1_bins, which are further analyzed
by the script run_step2_binsorter.py to recognize
and categorize firmware. The final results are stored in
FirmProcessing/step2_PostSig. Each image is accom-
panied by a JSON file containing firmware metadata such as
base address, entry point, and architecture when found.
[FirmFlaw] The binary analysis tool.

1. cd $PROJECT_FOLDER/FirmFlaw

https://drive.google.com/file/d/1emNNUBO61lLMdDBbVeI8z5NCdl5GypsG/view?usp=sharing
https://drive.google.com/file/d/1emNNUBO61lLMdDBbVeI8z5NCdl5GypsG/view?usp=sharing
https://drive.google.com/file/d/1emNNUBO61lLMdDBbVeI8z5NCdl5GypsG/view?usp=sharing
https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_11.1_build/ghidra_11.1_PUBLIC_20240607.zip
https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_11.1_build/ghidra_11.1_PUBLIC_20240607.zip
https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_11.1_build/ghidra_11.1_PUBLIC_20240607.zip
https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_11.1_build/ghidra_11.1_PUBLIC_20240607.zip

2. ./build.sh ../FirmProcessing/step2_postSig
3. python3 Mitigation.py ./ghidra_projects

arm_bins
4. ./FunctionID.sh && ./SimMatch.sh
5. python3 ResGen.py
After FirmFlaw is complete, we can find the results docu-

mented in ./res/results.md. This file presents the results
of the complexity analysis, mitigation detection and library
adoption in markdown table format. Additionally, it includes
detailed descriptions explaining the items in the table and
their meaning.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): OTACap can recover URLs used in firmware update
from APKs. This is proven by the experiment (E1),
which runs OTACap against 20 sample APKs. Our paper
shows the results obtained from running all the 40,675
APKs in Section 6.3.

(C2): Our LLM-powered crawler can fully exploit the recov-
ered URLs from E1 and download potential firmware.
This is proven by the experiment (E2) described in Sec-
tion 6.4 of our paper.

(C3): Our firmware validation pipeline leverages the foot-
prints left in the firmware compilation and packing pro-
cess to confirm firmware and to extract metadata. This is
proven by the experiment (E3) described in Section 6.4
of our paper.

(C4): Our binary analysis tool supports Arm- and Xtensa-
based firmware. For each image in the provided firmware
dataset, it counts the function number (Fig. 3 and
tables 6 and 7), firmware size (Fig. 4 and table 6),
mitigation adoption rates (Table 10), and library adop-
tion (Tables 8 and 9). This is proven by the experiment
(E4) described in Section 7.2 of our paper.

A.4.2 Experiments

(E1): [OTACap] [3 human-minutes + 1 to 6 compute-hours]:
Run OTACap on the APKs stored in apk-dataset.
How to: We provide a script that runs OTACap on the
APKs in apk-dataset.
Preparation: Set up and install apktool and OTACap.
Execution: cd otacap && ./run.sh
Results: The results are located in the outputs-json
folder inside the otacap folder. Each JSON file corre-
sponds to an APK. The reconstructed URLs that will be
used in next steps appear in the ValueSet fields. The
file comes with more fields that contain metadata.

(E2): [Crawler] [5 human-minutes + 1 to 6 compute-hour]:
Run our crawler to download potential firmware images
using the URLs collected in E1.

How to: We provide a script that executes our crawler
using the URLs obtained in the previous experiment
(E1).
Preparation: Install and set up Ollama, Scrapy and the
crawler environment.
Execution: cd crawler && ./run.sh
Results: The tool should download around 40 po-
tential images, which will be stored in the folder
crawler/httpftp/results/files.

(E3): [Firmware recognition pipeline] [5 human-minutes +
30 compute-minutes]: Run the firmware recognition
pipeline to delete false positives, extract metadata from
the images, and prepare a copy for firmware analysis.
How to: We provided a script to run the complete
pipeline on the images crawled in E2.
Preparation: Set up and build FirmXRay and binwalk
dependencies.
Execution: cd FirmProcessing &&./pipeline.sh
Results: We expect around 30 confirmed firmware
images, which will be stored in the folder
FirmProcessing/step2_postSig.

(E4): [Binary Analysis pipeline] [1 human-minutes + 8-10
compute-hour]: Run the binary analysis pipeline to ana-
lyze firmware complexity, detect attack mitigation and
library adoption in firmware images. The target is the
whole firmware dataset we collected from 40,675 APKs,
instead of the 20 APK samples.
How to: We provide a script to execute the analysis
pipeline on the target firmware images.
Preparation: Set up the FirmFlaw environment and
download the firmware dataset (link in §A.2.4) to
$PROJECT_FOLDER. Then, unzip all_firmware.zip.
Execution: cd FirmFlaw && ./pipeline.sh
../all_firmware/arm_and_xtensa.
Results: This file presents the results of the complexity
analysis, mitigation detection and library adoption in
markdown table format. Additionally, it includes detailed
descriptions explaining the items in the table and their
meanings. It should agree with the tables in Section 7.2
of our paper.

A.5 Notes on Reusability
Our firmware collection tool downloads firmware using URLs
obtained from APKs. Because the device manufacturers might
invalidate the URLs from time to time, the experiment results
could change.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

