
USENIX Security ’24 Artifact Appendix: Formal Security Analysis of
Widevine through the W3C EME Standard

Stéphanie Delaune
Univ Rennes, CNRS, IRISA, France

Joseph Lallemand
Univ Rennes, CNRS, IRISA, France

Gwendal Patat
Fraunhofer SIT | ATHENE, Germany

Florian Roudot
Univ Rennes, CNRS, IRISA, France

Mohamed Sabt
Univ Rennes, CNRS, IRISA, France

A Artifact Appendix

This artifact appendix describes the experiments and case
studies conducted in the research paper Formal Security Anal-
ysis of Widevine through the W3C EME Standard.

A.1 Abstract

Streaming services such as Netflix, Amazon Prime Video,
or Disney+ rely on the widespread EME standard to deliver
their content to end users on all major web browsers. While
providing an abstraction layer to the underlying DRM proto-
cols of each device, the security of this API has never been
formally studied. One of the core objectives of this research
is to provide a formal security analysis of Widevine, the most
deployed DRM instantiating EME.

Relying on TAMARIN, we study two variants of the
Widevine DRM system. Our investigation highlights a vulner-
ability that could allow for unlimited media consumption. Ad-
ditionally, we present a fix suitable for both mobile and desk-
top platforms, and formally prove it secure using TAMARIN.

We provide means to reproduce all the proofs and analyses
we performed using the TAMARIN prover. We study both the
Android version of Widevine (where the renewal request con-
tains a so-called Key Control Block – KCB), and the desktop
version (where it does not). For each version, we consider
both the actual protocol and the fixed version which includes
the mitigation we propose. Altogether, we thus present four
protocol models as the artifact for our paper.

A.2 Description & Requirements

A.2.1 Security, Privacy, and Ethical Concerns

Executing the models provided as artifact does not present any
security or ethical risks. The vulnerability we found has been
responsibly disclosed to Widevine and the W3C, as discussed
in the paper.

A.2.2 How to Access

Our artifact is available in a public GitHub repos-
itory, with detailed instructions to replicate the ex-
periments discussed in the original paper. https:
//github.com/Avalonswanderer/eme_widevine_
formal_verification/releases/tag/v1.1.

A.2.3 Hardware Dependencies

Running our artifact does not require any specific hardware.
We used a fairly standard laptop (2.30GHz Intel Core i7-
1068NG7 CPU, 16GB of RAM), and were able to verify all
our models in a few minutes.

A.2.4 Software dependencies

Our artifact relies on the following dependencies:

• The TAMARIN Prover1. We used version 1.8.0,
which is the latest release at the time of writ-
ing. TAMARIN itself depends on Haskell-stack2,
GraphViz3, and Maude4 (versions 2.7.1 to 3.3.1 are
recommended by TAMARIN). Installation instructions
for TAMARIN and its dependencies can be found
at https://tamarin-prover.com/manual/master/
book/002_installation.html. Note that TAMARIN
runs natively on Linux or macOS, but not on Windows
systems (WSL may be used there).

• Python35, which can be installed from most package
managers or manually. We used version 3.12, but any
relatively recent version should work as well.

1https://tamarin-prover.com/
2https://github.com/commercialhaskell/stack
3https://www.graphviz.org
4https://github.com/maude-lang/Maude
5https://www.python.org/downloads/

https://github.com/Avalonswanderer/eme_widevine_formal_verification/releases/tag/v1.1
https://github.com/Avalonswanderer/eme_widevine_formal_verification/releases/tag/v1.1
https://github.com/Avalonswanderer/eme_widevine_formal_verification/releases/tag/v1.1
https://tamarin-prover.com/manual/master/book/002_installation.html
https://tamarin-prover.com/manual/master/book/002_installation.html
https://tamarin-prover.com/
https://github.com/commercialhaskell/stack
https://www.graphviz.org
https://github.com/maude-lang/Maude
https://www.python.org/downloads/


A.2.5 Benchmarks

None.

A.3 Setup
A.3.1 Installation

1. Install TAMARIN (and its dependencies), either with a
package manager, by manually downloading the bina-
ries, or by compiling it from sources. Instructions are
provided at https://tamarin-prover.com/manual/
master/book/002_installation.html.

2. Install Python3.

3. Retrieve the files from our repository.

A.3.2 Basic Test

To check that TAMARIN is properly installed, run

$ tamarin-prover test

You should see a diagnostic message, ensuring that

• Maude is correctly installed;

• GraphViz is correctly installed;

• unification works properly.

It should conclude with:

All tests successful.
The tamarin-prover should work as intended.

:-) happy proving (-:

A.4 Evaluation Workflow
Our repository contains a README file and four subfolders:
WithKCB, WithoutKCB, FixWithKCB, and FixWithoutKCB.
These four folders correspond to the four models we devel-
oped, to analyze the Android version (WithKCB), the desktop
version (WithoutKCB), and the mitigation we proposed for
both versions (FixWithKCB and FixWithoutKCB).

For the security analysis, we consider 7 security goals that
are explained in the paper. In a nutshell, they are:

Goal 1: Confidentiality of the decryption key.

Goal 2: Integrity and authenticity of initial licenses.

Goal 3: Freshness of initial licenses.

Goal 4: Enforcing expiration time of initial licenses.

Goal 5: Integrity and authenticity of renewal licenses.

Goal 6: Freshness of renewal licenses.

Goal 7: Enforcing expiration time of renewal licenses.

In addition, we prove an “executability lemma”, as a form of
sanity check. This lemma expresses the fact that the normal
intended protocol flow can be executed. Its purpose is to
ascertain that our models are correct.

We also consider an extra security goal, expressing that
the license policies are respected, i.e. that the CDM can load
a renewal license only if it is authorized by the policy. This
goal cannot be stated at the EME level (the API studied in this
paper), as policies are not part of EME. Nevertheless, we still
include this extra goal, which we call Goal 8, for the specific
case of Widevine.

A.4.1 Major Claims

Our findings are summarized in Table 1. Most of the proofs re-
quired some intermediate lemmas in order to conclude. These
proofs have been obtained at first using the interactive mode
of TAMARIN. However, for reproducibility purposes, we then
automated them, relying on the oracle mechanism available
in TAMARIN. The experiments below can therefore be run
non-interactively from the command line.

without fix with fix
KCB with without with without

Goal 1 ✓ ✓ ✓ ✓

Goal 2 ✓ ✓ ✓ ✓
Goal 3 ✓ ✓ ✓ ✓
Goal 4 ✓ ✓ ✓ ✓

Goal 5 ✗ ✗ ✓ ✓
Goal 6 ✓ ✓ ✓ ✓
Goal 7 ✗ ✗ ✓ ✓
Goal 8 ✗ ✗ ✓ ✓

Table 1: Summary of our results.

Goals marked with ✓ in the table are satisfied, and are
proved automatically by TAMARIN in the respective files.
Goals against which we found attacks are marked ✗ in the
table (see the paper for a description of the attacks). In fact,
we used TAMARIN to discover the attack on Goal 5, and
stored the attack trace in each corresponding TAMARIN file
for reproducibility. The goals in a shaded box in the table are
broken as well as a consequence of the attack on Goal 5. We
did not use TAMARIN to derive the same attack again for each
of them, and thus the corresponding files do not contain any
proof or attack for these goals.

A.4.2 Experiments

All our experiments were performed on a standard laptop,
as mentioned earlier. The verification time varies depending
on the model, and the goals we are trying to establish. The
easiest lemmas are proved in a few seconds, whereas the most
difficult ones require around 4 minutes.

https://tamarin-prover.com/manual/master/book/002_installation.html
https://tamarin-prover.com/manual/master/book/002_installation.html


Below, we explain the different types of experiments, as
well as the results that are expected when running them.

(E1): Proving Goal 1 in TAMARIN.
Preparation: Go to the folder containing the model for
which you want to establish Goal 1.
Execution: Run the command given in the README file,
and recalled below:
tamarin-prover --prove
--derivcheck-timeout=0
--heuristic=O
--oraclename=’widevine.oracle’
widevine.spthy -DSecrecy -DGoal1

Results: After execution, you should obtain a summary
stating that ContentKeySecrecy, i.e. Goal 1, (and actu-
ally all required intermediate lemmas) are verified.

==================================================
summary of summaries:
analyzed: widevine.spthy
processing time: 9.16s

OTT2 (all-traces): verified (6 steps)
...
contentKeySecrecy (all-traces): verified (2 steps)
=====================================================

(E2): Proving Goal 2, Goal 3, and Goal 4 in TAMARIN.
Preparation: Go to the folder containing the model for
which you want to establish Goals 2, 3, and 4.
Execution: Run the command given in the README file,
and recalled below:
tamarin-prover --prove

--derivcheck-timeout=0
--heuristic=O
--oraclename=’widevine.oracle’
widevine.spthy -DSecrecy -DGoalInitialPart

Results: After execution, you should obtain a summary
stating that all these goals, as well as the required in-
termediate lemmas, are verified. The correspondence
between goals and lemmas is as follows:

• Goal 2: OTTLicenseResponseBeforeLoad
• Goal 3: LoadRespUnique
• Goal 4: UseAuthorised

===================================================
summary of summaries:
analyzed: widevine.spthy
processing time: 9.96s

OTT2 (all-traces): verified (6 steps)
...
UseAuthorised (all-traces): verified (4 steps)
=====================================================

(E3): Proving Goal 6 (on all models), as well as Goals 5, 7,
and 8 on the fixed versions is similar:
tamarin-prover --prove

--derivcheck-timeout=0

--heuristic=O
--oraclename=’widevine.oracle’
widevine.spthy -DSecrecy -DGoal6

tamarin-prover --prove
--derivcheck-timeout=0 --heuristic=O
--oraclename=’widevine.oracle’

widevine.spthy -DSecrecy -DGoal578

The correspondence between goals and lemmas is as
follows:

• Goal 5: OTTRefreshResponseBeforeLoadRefresh
• Goal 6: LoadRefreshRespUnique
• Goal 7: UseAuthorised
• Goal 8: LoadRefreshOnlyIfRenewable

The runtime is slightly longer for these experiments.
TAMARIN should still conclude within a few minutes.

(E4): For Goal 5, which does not hold in the models
WithoutKCB and WithKCB, the attack trace has been
stored in the corresponding file, and can be replayed6

Preparation: Go to the folder containing the model for
which you want to establish that Goal 5 fails.
Execution: Run the command given in the README file,
and recalled below:
tamarin-prover

--derivcheck-timeout=0
--heuristic=O
--oraclename=’widevine.oracle’
widevine.spthy -DSecrecy -DGoal578

Results: After execution, you should obtain a sum-
mary stating that Goal 5, which is to say lemma
OTTRefreshResponseBeforeLoadRefresh, is falsi-
fied, and that an attack trace has been found. All the other
lemmas are marked “analysis incomplete” as we did not
ask TAMARIN to prove them (note that the --prove
option is not part of the command).
===================================================
summary of summaries:
analyzed: widevine.spthy
processing time: 13.28s
...
OTTRefreshResponseBeforeLoadRefresh (all-traces):

falsified - found trace (77 steps)
...
===================================================

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

6The proof scripts are not complete and contain some by sorry instructions.
This is normal as there is an attack, and thus this goal can not be proved.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software dependencies
	Benchmarks

	Setup
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Version


