
USENIX Security ’24 Artifact Appendix: CacheWarp: Software-based
Fault Injection using Selective State Reset

Ruiyi Zhang
CISPA Helmholtz Center
for Information Security

Lukas Gerlach
CISPA Helmholtz Center
for Information Security

Daniel Weber
CISPA Helmholtz Center
for Information Security

Lorenz Hetterich
Independent

Youheng Lü
Independent

Andreas Kogler
Graz University of Technology

Michael Schwarz
CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract
Our paper presents CacheWarp, a new software-based fault
attack on AMD SEV-ES and SEV-SNP, exploiting the possibil-
ity to architecturally revert modified cache lines of guest VMs
to their previous (stale) state. Unlike previous attacks on the
integrity, CacheWarp is not mitigated on the newest SEV-SNP
implementation, and it does not rely on specifics of the guest
VM. CacheWarp only has to interrupt the VM at an attacker-
chosen point to invalidate modified cache lines without them
being written back to memory. This artifact demonstrates two
attacking primitives, DropForge and TimeWarp, exploiting
the explicit and implicit memory writes individually. We com-
bine Prime+Probe and a stepping framework with Cachewarp
to achieve reliable selective state resets, resulting in control-
flow hijacking attacks. Finally, we show how CacheWarp can
be mounted “blindly” to recover the full private key of RSA-
CRT in the Intel IPP crypto library. This artifact includes all
the code necessary to reproduce the proof-of-concepts.

A.2 Description & Requirements
This artifact includes five main experiments: 1) Last-level
cache eviction; 2) Selective state reset; 3) Proof of Concept
(PoC) of DropForge; 4) PoC of TimeWarp; 5) Bellcore Attack.
All experiments require an AMD EPYC machine below the
4th generation. For all experiments except the first, you must
be able to launch AMD SEV-ES/SEV-SNP VMs.

A.2.1 Security, privacy, and ethical concerns

Cache eviction does not pose any security risks. However,
the instruction used for CacheWarp, “INVD”, and APIC con-
figuration, are likely to hang the machine if used without
caution.

A.2.2 How to access

The artifact is available on GitHub: https://github.com/
cispa/CacheWarp/tree/ae.

A.2.3 Hardware dependencies

This artifact requires AMD SEV VMs. Therefore, the artifact
requires one of the following hardware:

• a 2nd generation EPYC CPU with SEV-ES support.

• a 3rd generation EPYC CPU with SEV-SNP support.

In the paper, we used an 8-core AMD EPYC 7252 CPU for
SEV-ES and AMD EPYC 7313P and 7443 CPUs for SEV-
SNP.

A.2.4 Software dependencies

All our experiments are tested on Ubuntu 22.04 LTS (Linux
kernel 6.1.0). QEMU and OVMF are required to launch SEV
guest VMs, as referenced from AMD’s official GitHub repos-
itory1. Finally, we use the libtea framework to modify page
table entries and configure the APIC timer2.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

To access the artifact, clone the repo https://github.com/
cispa/CacheWarp.git and checkout to tag “ae”.

1https://github.com/AMDESE/AMDSEV
2https://github.com/libtea/frameworks

https://github.com/cispa/CacheWarp/tree/ae
https://github.com/cispa/CacheWarp/tree/ae
https://github.com/cispa/CacheWarp.git
https://github.com/cispa/CacheWarp.git
https://github.com/AMDESE/AMDSEV
https://github.com/libtea/frameworks

git clone https://github.com/cispa/CacheWarp.git
cd CacheWarp
git checkout ae

To install dependency, you will need to install:

sudo apt install cpufrequtils msr-tools -y

To compile the “libtea”, navigate to folder “framework-
s/libtea”:

git submodule update --init
cd frameworks/libtea
make libtea -x86 -interrupts

To prepare the host OS and guest VM, following the guid-
ance from AMD:

git clone https://github.com/AMDESE/AMDSEV.git
cd AMDSEV
git checkout sev-es (or snp-latest)

A.3.2 Basic Test

Test if the INVD instruction can be enabled.

sudo modprobe msr;
CUR=$(sudo rdmsr 0xc0010015);
ENABLED=$(printf "%x" $((0x$CUR & ~16)));
sudo wrmsr -a 0xc0010015 0x$ENABLED

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We show how the hypervisor can selectively drop dirty
cache lines, partially writing back the cache before its
invalidation. This is proven by the experiment (E1, E2)
described in Section 5.2, with the results shown in Figure
7.

(C2): With Dropforge (Section 4.3), we change the behavior
of functions inside the victim VM.

(C3): With Timewarp (Section 4.4), we redirect return values
to an earlier point in the victim program’s control flow.

(C4): We demonstrate that CacheWarp can perform a Bell-
core attack on RSA-CRT (Section 6.1), fully recovering
the private key given a single faulty signature.

A.4.2 Experiments

(E1): Eviction [5 minutes]:
How to: Find a pattern to evict a L1/L2 cache line to
the non-inclusive L3 cache and then evict it to memory.
Preparation: Enable huge pages and reduce the noise.

sudo sysctl -w vm.nr_hugepages=32

Check cpufreq-info
sudo cpufreq -info -c 0 | grep "available"

Denoise - fix the frequency
sudo cpufreq -set -c <CORE > -g userspace
sudo cpufreq -set -c <CORE > -f <FREQ >MHz

Execution: Run it with sudo.

cd l2-l3-prime
make
sudo ./hist <CORE >

Results: A reliable eviction pattern will be printed in
the terminal.

(E2): Selective state reset [2 hours + (Additionally 1 day to
launch AMD SEV VMs)]:
How to: Incorporate the eviction pattern obtained
from E1 into the host kernel. To set up the victim,
launch a SEV-ES/SNP machine. Next, compile and run
"pocs/generic-writes-drop.c" inside the victim VM. The
attacker chooses to drop memory modifications residing
in only one cache set.
Preparation: Recompile the host kernel and launch a
SEV-ES/SNP VM.

cd AMDSEV/build/linux
Apply the kernel patch for the host

Specify one core <X> to test this artifact
sudo cat /sys/devices/system/cpu/cpu<X>/cache/

index3/shared_cpu_list

Offline other cores within the CCX
echo 0 | sudo tee /sys/devices/system/cpu/cpu<

Y>/online

Execution: Compile and execute in both the victim and
attacker folders:

vm> sudo apt update && sudo apt -y install vim
build -essential

vm> sudo sysctl -w vm.nr_hugepages=1
vm> gcc generic -writes -drop.c -O2 -o generic -

writes -drop
hv> cd attacker && make

vm> ./generic -writes -drop
hv> sudo ./cachewarp_blind_drop 70 100 225

Results: You can observe a miscalculated sum in the
terminal only with the correct cache set index (225).

Expected Output (in the VM)
phys: 0x43c00000
phys: 0x43c03840
result: 39999998815 (similar , i.e., not

40000000000)

(E3): DropForge [10 minutes]:
How to: Compile "dropforge.c" and run it inside the
victim VM. The attacker iteratively drops each cache
set.
Execution: Run the victim and attacker:

vm> gcc dropforge.c -o victim
vm> ./victim
hv> sudo ./invd.sh

Results: The attacker iteratively drops each cache set.
A value will be printed to the terminal once the cache
set containing the stack frame is dropped.

(E4): TimeWarp [10 minutes]:
How to: Drop the return address of the call instruction.
Preparation: Compile “timewarp.c” and run it inside
the victim VM.

gcc timewarp.c -o timewarp

Execution: Run the victim and attacker poc:

vm> ./timewarp
hv> sudo ./invd.sh

Results: An unreachable path will be executed.

Expected Output (in the VM)
"Win!"

(E5): Bellcore Attack:
How to: Using RSA-CRT to sign inside the guest VM
until the hypervisor injects a fault, resulting in a faulty
signature.
Preparation: Copy the folder “rsa-crt” into the guest
VM and compile it.

vm> make all

Execution: Keep signing in a loop until a fault results
in a different signature. If the signing loop does not end,
repeat the drop multiple times from the hypervisor.

vm> make exploit
hv> sudo ./cachewarp_blind_drop 70 100 225 0

Results: The prime numbers P and Q will be recovered
and printed to the terminal.

vm> python3 exploit.py

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

