
USENIX Security ’24 Artifact Appendix: Endokernel: A Thread Safe
Monitor for Lightweight Subprocess Isolation

Fangfei Yang
Rice University

Bumjin Im1

Amazon.com
Weijie Huang

Rice University
Kelly Kaoudis
Trail of Bits

Anjo Vahldiek-Oberwagner
Intel Labs

Chia-Che Tsai
Texas A&M University

Nathan Dautenhahn
Riverside Research

A Artifact Appendix

A.1 Abstract
The Endokernel is an intra-process security monitor that iso-
lates memory at the granularity of subprocesses with low
overhead. This appendix presents the test suites aimed at
providing a reproducible environment for running the Endok-
ernel, enabling users to utilize it and execute the benchmarks
discussed in the paper. The artifacts include a test harness that
leverages Docker for a containerized execution environment.
You can also run our tests using the provided runq runtime or
on bare metal systems. The Endokernel requires CPU support
for Memory Protection Keys (MPK).

A.2 Description & Requirements
We provide several tools and pre-built binaries to assist you
with your evaluation. Our Test Suite and related test scripts
automatically download and compile all necessary tools. This
Test Suite requires Ubuntu 20.10 to run. For those not using
this system, we offer a comprehensive Docker image based
on Ubuntu 20.10, which packages the fully compiled Test
Suite for immediate use.

Optionally, we provide a modified Linux kernel necessary
for tests that involve signals. This is not required for AE, but if
you want to use Endokernel’s signal features, you can use the
runq runtime or install the kernel we provide on Ubuntu 20.10.
However, please note that runq, which is based on QEMU,
cannot perform all tests.

Ensure you have more than 50 GB of disk space available
to run the benchmarks.

A.2.1 Security, privacy, and ethical concerns

The benchmarks themselves do not impact the external envi-
ronment; however, we have observed instability in the filesys-
tem leading to system crashes with the base kernel version
we use. This issue is inherent to the original kernel and is not

1Authored before joining Amazon.com

related to our patches. In our setup, which exclusively uses
ext4 partitions, these instabilities are generally resolved upon
rebooting. However, please be mindful of the potential effects
caused by filesystem instability.

A.2.2 How to access

You can access all the materials required for the Artifact
Evaluation through the following links:

https://github.com/endokernel/test/releases/tag/after-ae

A.2.3 Hardware dependencies

PC with MPK

A.2.4 Software dependencies

On the Ubuntu platform, to run our test suite on bare metal,
you will need the following packages: build-essential,
git, cmake, libncurses-dev, gawk, flex,
bison, openssl, libssl-dev, dkms, libelf-dev,
libudev-dev, libpci-dev, libiberty-dev,
autoconf, libdwarf-dev, libdw-dev, libaio-dev,
libpcre3-dev, libtool, uuid-dev, libblkid-dev,
apache2-utils, automake, libtool-bin, wget,
dwarves, curl, apache2-utils, psmisc, tcl.

If you are using Docker or runq, you only need docker
and/or install our modified runq. When using only Docker,
the host kernel should be at least 5.11.

Additionally, you will need to install Git Large File Stor-
age (LFS) because some binary files are stored in the code
repository via LFS.

A.2.5 Benchmarks

None



A.3 Set-up
A.3.1 Installation

Install/Build Docker Image for Test Suite You can check-
out our Endokernel Test Suite and compile the Docker image
yourself using with make image. The image will require ap-
proximately 10GB of disk space.

Or, you can download and load our Docker image with:

docker load < intravirt-env.tar.gz

The image is based on the old test suite script; you need to
overwrite it (./testcases/) with the latest script (the binary
hasn’t changed).

The default Docker image only uses the dispatch_eiv
(nex-sud in the paper) configuration, as we do not pri-
marily compare between configurations. You can modify
script/iv.sh to compile other configurations.

Setup Runq (Optional) If you are using runq, please ensure
you have Docker functioning properly, then follow these steps
and instructions in the runq repository:

1. Download the Runq v1.0.2 and extract it to
/var/lib/runq.

2. Run the script /var/lib/runq/qemu/mkcerts.sh to
configure the certificates.

3. Ensure that the vhost_vsock kernel module is enabled.

The runq environment has more complete signal compati-
bility, though this is not necessary for AE; instead, it causes
errors in some tests.

docker run -ti --rm \
--security-opt=seccomp:unconfined \
intravirt-env

Build Test Suite on bare metal (Optional) Run the com-
mand make build-prog. By default, this command utilizes
prebuilt binary files. Note that you need to place our test suite
in the directory /intravirt to do this. Alternatively, you
must set the USE_PREBUILT variable to 0 to disable the use
of prebuilt binaries, as the glibc prefix is specified during the
configuration process in the pre-built binaries.

Install Modified Kernel and Glibc (Optional) If you are
using Ubuntu 20.10, you can also install our provided kernel
and glibc to run tests designed for signals without using runq.
You only need to install the kernel available at this link and
the glibc from this link.

A.3.2 Basic Test

Initiate with the following command:

docker run -ti --rm \
--security-opt=seccomp:unconfined \
intravirt-env

If you want to use runq, add -runtime runq. If you are on
bare metal, you can skip this step.

For bare metal and runq, you can verify that the current
kernel version is Linux 5.9.8-arch1-cet by running:

uname -a

Next, navigate to the testcases directory and execute the
command:

python ./nginx.py

You should observe benchmarks for both the baseline and
Endokernel running.

Finally, go to the /intravirt/result directory. You
should find generated CSV files where the results for baseline
and dispatch_eph are similar and non-zero.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Endokernel has been tested on various applications
including lighttpd, Nginx, curl, SQLite, and zip, and cor-
responding performance metrics have been obtained.
This is proven by the experiments (E1) whose results are
reported in 6.2.2 with Figure 7.

(C2): Endokernel has been tested on LMBench for system
call overhead and sysbench for thread scalability as mi-
crobenchmarks, and corresponding performance metrics
have been obtained. This is proven by the experiments
(E2) whose results are reported in 6.2.1 with Figure 4,5
and 6.

A.4.2 Experiments

(E1): [Application Benchmarks] [30 human-minutes + about
1 computer-hours + 15GB disk]: Benchmark applica-
tions under Endokernel and compare it with the baseline.
Preparation: Switch to the testcases directory.
For curl tests, navigate to the www directory and execute
the following command to create a necessary file:

cd www
dd if=/dev/random of=1g.bin \
bs=1024 count=1048576

You may skip this step if you are using runq, as nginx un-
der runq is unable to serve 1GB files, thereby rendering
this test unexecutable.
Execution: Execute the following Python scripts to run
the benchmarks:

https://github.com/endokernel/test/releases/tag/after-ae
https://drive.google.com/file/d/1AIgl5LOoXydskstfsP2OZae_51K5lktU/view?usp=sharing
https://github.com/endokernel/runq/releases/tag/v1.0.2
https://github.com/endokernel/runq/blob/main/kernel/linux-image-5.9.8-arch1-cet_5.9.8-arch1-cet-1_amd64.deb
https://github.com/endokernel/glibc/releases/tag/cetonly


python ./lighttpd.py
python ./nginx.py
python ./zip.py
python ./curl.py
python ./sqlite.py

In order to test files larger than 4k, you need to modify
the datasizes in nginx.py
We have set the tries parameter relatively low. You can
modify this setting in variables.py. Some tests mod-
ify variable.tries, which overrides the value set in
variables.py. Adjustments to tries for these specific
tests will need to be made individually.
Results: In the result directory, a .csv file will be cre-
ated for each test/configuration conducted, which can be
used to calculate overhead. Due to limitations imposed
by runq, some tests may not run as expected.
Example Results:

cat nginx_dispatch_eiv.csv
0k,1k,2k,4k,
137.00,670.62,1209.93,2221.56,
133.37,658.62,1233.54,2180.99,

cat nginx_baseline.csv
0k,1k,2k,4k,
133.10,685.60,1227.32,2409.75,
133.08,694.01,1237.02,2319.34,

cat zip.csv
baseline,dispatch_eiv,
25.357,34.433,
16.935,33.200,

cat curl.csv
baseline,dispatch_eiv,
5.342,1.691,
9.400,6.506,

To better interpret these results, you can use
calc_overhead.py result_folder test_name
to convert it to the numbers in the figures.

(E2): [Microbenchmarks using LMBench and sysbench] [10
human-minutes + about 10 computer-minutes + 1GB
disk]: Microbenchmarking Endokernel and compare it
with the baseline.
Preparation: Switch to the testcases directory.
Execution: Execute the following Python scripts to run
the benchmarks:

python ./lmbench.py # Figure 4
python ./file_bw.py # Figure 5
python ./sysbench.py # Figure 6

Results: In the result directory, a .csv file will be cre-
ated for each test/configuration conducted, which can be
used to calculate overhead. Due to limitations imposed
by runq, some tests may not run as expected.
Example Results:

cat sysbench_baseline.csv
1,,2,,4,,8,,16,,
memory,fileio,memory,fileio,memory,fileio,

memory,fileio,memory,fileio,memory,
fileio

176.35,6859.56,217.47,6102.65,
138.53,6164.54,224.41,6287.81,

cat ../result/sysbench_dispatch_eiv.csv
memory,fileio,memory,fileio,memory,fileio,

memory,fileio,memory,fileio,memory,
fileio

136.06,6288.02,223.91,6217.23,
139.51,6252.23,220.61,6234.21,

To better interpret these results, you can use
calc_overhead.py result_folder test_name
to convert it to the numbers in the figures.
We noticed that sysbench performance drops with 16
threads when using kernel 6.8 with this test suite. We
believe this is due to kernel version differences, as the
same binary does not show this issue with a 5.9 kernel.

A.5 Notes on Reusability
Endokernel’s signal virtualization layer and the design for
multithread safety can be utilized by other projects to con-
struct parts of their monitors. Additionally, some of Endok-
ernel’s syscall policies can also be adopted by other works.
However, being limited by its status as a research prototype,
these components may not be perfect or easily reusable as is.
We are currently rewriting parts of the design using a C++ or
Rust to enhance their portability and usability.

To utilize Endokernel effectively, you will likely need the
Endokernel repository and the modified glibc rather than the
related test suite. Endokernel can operate on a normal Linux
supporting MPK if the application is not using signals. In-
stallation can be conducted using the methods provided on
the project page. Libraries related to isolation are located at
libiso. By integrating these libraries into the code, Endokernel
is enabled to protect corresponding entry points and memory
using MPK.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://github.com/endokernel/endokernel-paper-ver/
https://github.com/endokernel/glibc
https://github.com/endokernel/endokernel-paper-ver/tree/main/src/libiso
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


