
USENIX Security ’24 Artifact Appendix: Indirector: High-Precision Branch
Target Injection Attacks Exploiting the Indirect Branch Predictor

Luyi Li* Hosein Yavarzadeh* Dean Tullsen

University of California San Diego
* Equal contribution joint first authors

A Artifact Appendix

A.1 Abstract
In this artifact, we describe Indirector, a collection of reverse
engineering code and branch injection attacks. For reverse
engineering, we provide detailed assembly benchmarks to un-
cover the architecture of the Branch Target Buffer (BTB) and
the Indirect Branch Predictor (IBP) on modern Intel CPUs.
Additionally, we analyze the microarchitectural impacts of
Intel Spectre v2 mitigation techniques. For attack implemen-
tation, we present the proof-of-concept of iBranch Locator, a
tool that can accurately locate any indirect branch within the
IBP. Leveraging this tool, we demonstrate two high-precision
injection attacks that target the IBP and BTB respectively.
Furthermore, we offer a method of exploiting the IBP and
BTB to break Address Space Layout Randomization (ASLR).

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Indirector requires the installation of a custom kernel mod-
ule to enable reading different performance counters on Intel
CPUs. No additional changes to the kernel code are neces-
sary. Disabling secure boot in the BIOS/UEFI setup menu is
also required. If the module is not installed successfully, the
assembly benchmark may cause a segmentation fault. Please
exercise caution.

A.2.2 How to access

The source code of Indirector is available
in this Github repository: https://github.
com/owenlly/Indirector_Artifact/tree/
1926f7284486827b96fc5c1493b867d95c3145ed

A.2.3 Hardware dependencies

In our repository, the assembly benchmarks are primarily
designed for Golden Cove and Raptor Cove, the P-core mi-
croarchitectures of 12th and 13th Gen Intel® Core™ CPUs.
The exact models used in our paper are:

• i9-12900 running Ubuntu 22.04.4 LTS with Linux kernel
5.10.209

• i7-13700K running Ubuntu 20.04.6 LTS with Linux ker-
nel 5.15.89

• i9-13900KS running Ubuntu 22.04.4 LTS with Linux
kernel 6.5.0-35-generic

All the benchmarks should be compatible with the P-core
of any 12th or 13th Gen Intel® Core™ CPU.

A.2.4 Software dependencies

Our assembly benchmark is implemented based on "Test pro-
grams for measuring clock cycles and performance monitor-
ing" from Agner Fog: http://www.agner.org/optimize.
We have included all the required files in the repository. Each
benchmark is written in x86 assembly and compiled by the
NASM assembler (version 2.14.02).

A.2.5 Benchmarks

None

A.3 Set-up

A.3.1 Installation

We have included scripts to install all the required packages.
For more stable results, we also provide scripts for setting
the CPU to performance mode and turning off the hardware
prefetcher. Enabling SMT is required for the core-ID test, and
we include a script to ensure SMT is enabled.

A.3.2 Basic Test

In the template test, one direct branch is iterated 1000 times
and the entire test is repeated 5 times. If everything is set up
correctly, the output will be in the results.out file.

https://github.com/owenlly/Indirector_Artifact/tree/1926f7284486827b96fc5c1493b867d95c3145ed
https://github.com/owenlly/Indirector_Artifact/tree/1926f7284486827b96fc5c1493b867d95c3145ed
https://github.com/owenlly/Indirector_Artifact/tree/1926f7284486827b96fc5c1493b867d95c3145ed
http://www.agner.org/optimize


A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Indirector is able to reveal that the BTB on Intel CPUs
records metadata including branch type and core-ID.
(E1, E2) prove this.

(C2): Indirector is able to reverse engineer the IBP on Intel
CPUs, including its input, associativity, TAGE-like struc-
ture, and the precise functions governing index and tag
hashing. (E3, E4, E5, E6, E7) prove this.

(C3): Indirector is able to reveal the indirect branch predic-
tion policy under different BTB and IBP states. (E8)
proves this.

(C4): Indirector is able to reverse engineer how Intel Spectre
v2 defenses, including IBRS, STIBP, and IBPB, impact
the states of the BTB and IBP. (E9) proves this.

(C5): iBranch Locator is capable of finding entry aliasing
with any indirect branch within the IBP without requiring
prior history information about the branch. (E10, E11)
prove this.

(C6): Using iBranch Locator, Indirector introduces two high-
precision injection attacks targeting the IBP and BTB
respectively, and one efficient method to break ASLR.
(E12, E13, E14) prove this.

A.4.2 Experiments

Preparation: Finish the initialization in Section A.3.1.
(E1): [1 human-minute + 1 compute-minute]: Test if the BTB

has a branch type check for indirect branch prediction.
Execution: Please refer to the README file under
Sec3_Reverse_Engineering/3_1_1_BTB_branch_type
for example usage and expected results under different
configurations.
Results: Only aliased indirect branches can mislead the
victim indirect branch for speculative execution.

(E2): [1 human-minute + 1 compute-minute]: Test if the
BTB entry is tagged with core-ID.
Execution: Please refer to the README file under
Sec3_Reverse_Engineering/3_1_2_BTB_core-ID for ex-
ample usage and expected results under different config-
urations.
Results: There are 11 available ways when both aliased
branches are on the same SMT core and 10 available
ways when they are on different SMT cores.

(E3): [1 human-minute + 1 compute-minute]: Test the PC
address input for the IBP and reproduce Figure 4.
Execution: Please refer to the README file under
Sec3_Reverse_Engineering/3_2_1_IBP_pc_input for re-
producing Figure 4.
Results: IBP uses PC[15:6] as input.

(E4): [1 human-minute + 1 compute-minute]: Test if the IBP
has a set-associative structure and reproduce Figure 5.
Execution: Please refer to the README file under

Sec3_Reverse_Engineering/3_2_2_IBP_associativity_lite
for reproducing Figure 5.
Results: The misprediction rate rises when the number
of indirect branches exceeds 6.

(E5): [1 human-minute + 60 compute-minutes]: Test if the
IBP has a TAGE-like structure and reproduce Figure 6.
Execution: Please refer to the README file un-
der Sec3_Reverse_Engineering/3_2_2_IBP_ associativ-
ity_complete for reproducing Figure 6.
Results: IBP has 3 2-way set-associative tables, each
indexed by a different length of branch history.

(E6): [1 human-minute + 1 compute-minute]: Verify the hash
functions for the IBP index and tag.
Execution: Please refer to the README file under
Sec3_Reverse_Engineering/3_2_4_IBP_hash for veri-
fying Figure 7 and 8.
Results: Injection is successful when using the results
of this aliasing search tool.

(E7): [1 human-minute + 1 compute-minute]: Test if the IBP
entry is tagged with core-ID.
Execution: Please refer to the README file under
Sec3_Reverse_Engineering/3_2_6_IBP_core-ID.
Results: Injection fails when aliased indirect branches
are on different SMT cores.

(E8): [2 human-minutes + 2 compute-minute]: Test BTB and
IBP interactions in Table 2.
Execution: Please refer to the README files un-
der Sec3_Reverse_Engineering/3_3_1_BTB_hit and
Sec3_Reverse_Engineering/3_3_2_BTB_miss.
Results: The results should align with Table 2.

(E9): [2 human-minutes + 2 compute-minute]: Test the im-
pacts of Intel Spectre v2 defenses on the BTB and IBP
in Table 3.
Execution: Please refer to the README files un-
der Sec4_Intel_Defense/4_1_BTB and Sec4_Intel _De-
fense/4_2_IBP.
Results: The results should align with Table 3.

(E10): [1 human-minute + 2 compute-minutes]: Test the
iBranch Index Locator and verify Figure 11.
Execution: Please refer to the README file under
Sec5_iBranch_Locator/5_1_index_locator_poc.
Results: There are misprediction spikes when scanning
the IBP set #184 and #384.

(E11): [1 human-minute + 2 compute-minutes]: Test the
iBranch Tag Locator and verify Figure 12.
Execution: Please refer to the README file under
Sec5_iBranch_Locator/5_2_tag_locator_poc.
Results: There are misprediction spikes when the tag
value are 536 and 855.

(E12): [1 human-minute + 1 compute-minute]: Test cross-
process IBP injection attack.
Execution: Please refer to the README file under
Sec6_Injection_Attack/6_1_IBP_injection_poc.
Results: The secret is extracted successfully.



(E13): [2 human-minute + 2 compute-minutes]: Test cross-
process BTB injection attack and verify Figure 13.
Execution: Please refer to the README file un-
der Sec6_Injection_Attack/6_2_BTB_injection_poc and
Sec6_Injection_Attack/6_2_BTB_injection_plot.
Results: The secret is extracted successfully only under
IBP eviction and BTB injection.

(E14): [1 human-minute + 30 compute-minutes]: Test the
method of breaking ASLR exploiting the BTB and IBP.
Execution: Please refer to the README file under
Sec6_Injection_Attack/6_3_ASLR_poc.
Results: The randomized bits are successfully broken,
enabling BTB injection.

A.5 Notes on Reusability
Our reverse engineering methodology can be applied to most
Intel flagship processors from Skylake to Raptor Lake (P-core
+ E-core), given their consistent TAGE-like structure. How-
ever, certain features, such as the PHR update hash function,
BTB/IBP mapping function, and BTB/IBP associativity, may
differ among microarchitectures. Users will need to make
relative modifications to the code accordingly.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


