
USENIX Security ’24 Artifact Appendix: <SeaK: Rethinking the Design
of a Secure Allocator for OS Kernel>

A Artifact Appendix

We aim to apply for Available, Functional and Reproduced
Badges.

A.1 Abstract
This artifact is applying for an Artifacts Available badge,
an Artifacts Functional badge, and an Results Reproduced
badge. For Available badge, all source code and scripts can
be found in https://github.com/a8stract-lab/SeaK/
tree/v1.1. For Functional badge, we will use CVE-2021-
4154 as an example to demonstrate the workflow to create
an eBPF program from scratch. For Reproduced badge, we
have prepared LMbench and phoronix test suite to thoroughly
reproduce the performance and memory overhead. All the
experiments will be done in a virtual machine for convenience
and detailed workflow is in the github repository.

A.2 Description & Requirements
In this section, we first describe whether reproducing our
artifacts will risk the evaluator’s machine security, followed
by approaches to accessing our artifacts. Then, we describe
hardware dependencies and software dependencies before
listing the benchmarks.

A.2.1 Security, privacy, and ethical concerns

SeaK aims to protect the OS kernel through the eBPF ecosys-
tem. To enable SeaK, the kernel needs additional eBPF helper
functions before being compiled and installed, which is de-
structive to some extent. Therefore, to make evaluators feel
safe, we prepared a kernel image and a root filesystem for
evaluators. As such, evaluators can download the image and
reproduce our results in an isolated environment, ensuring the
safety and privacy of the host machine. The access for the
image can be found in Section A.2.2. Furthermore, it is impor-
tant to note that all vulnerabilities included in the artifact are
publicly available and have been addressed in the mainstream
kernel. Therefore, there are no security, privacy, or ethical
concerns regarding the open-source community. The artifact
builds upon resolved issues, and its purpose is to contribute
to the knowledge and advancement of the field.

A.2.2 How to access

The complete artifacts are available in a public Github Repo
https://github.com/a8stract-lab/SeaK/tree/v1.1 ,
which includes three main components: eBPF programs
and corresponding scripts for evaluation, source code de-
veloped in SeaK, manuals and examples for evaluators to
quickly understand the key idea of SeaK. The virtual ma-
chine file system image can be downloaded from https:
//tinyurl.com/mwsub255, which should be put under the
directory ’1-evalution’. Due to the space limit, we cannot list
all details here. Instead, they are clearly stated in the repo
for evaluators to follow. The artifacts provided in the Github
Repo are sufficient for evaluators to reproduce.

A.2.3 Hardware dependencies

To completely reproduce SeaK, we recommend the following
minimum hardware configurations: 1⃝ an Intel CPU with VT-
X virtualization feature, 2⃝ 32GB or larger memory, and 3⃝
at least 300GB disk space (for LLVM compilation).

A.2.4 Software dependencies

It is preferable to perform the evaluation on the Ubuntu Linux
distro, especially the 22.04 desktop which is the same OS for
SeaK development. The OS is supposed to include essential
packages such as debootstrap, qemu-system-x86_64, open-
ssh and wget. These packages are necessary for setting up the
evaluation environment and conducting runtime evaluations.
Besides, it is advised not to utilize Docker for the evaluation
process because the artifact necessitates the use of two sep-
arate terminals - one for displaying the result when running
the vulnerabilities programs or benchmarks and another for
running bpf programs.

A.2.5 Benchmarks

The exploits for vulnerabilities used as test cases have been
collected and provided in the Github Repo. We used Phoronix-
benchmark and lmbench for performance measurement which
is publicly available online

https://github.com/a8stract-lab/SeaK/tree/v1.1
https://github.com/a8stract-lab/SeaK/tree/v1.1
https://github.com/a8stract-lab/SeaK/tree/v1.1
https://tinyurl.com/mwsub255
https://tinyurl.com/mwsub255

A.3 Set-up

In this section, we focus on the installation and testing of SeaK
using the kernel image and a root filesystem we provided for
the sake of ethics (See Section A.2.2). The evaluator can boot
up the kernel using QEMU. Due to the space limit, we move
the detailed instruction for reproducing SeaK from scratch in
the Github Repo.

A.3.1 Functional

To present the functional of the SeaK, we take CVE-2021-
4154 as an example, demonstrate the workflow to create an
eBPF program from scratch. At first, system admin may re-
ceive a bug report showing the error sites and objects of the
heap memory corruption. Then, system admin use the static
analysis tools hot_bpf_analyzer to extract the alloction
and release sites of those heap objects. After that, SeaK gener-
ate the BPF AA(atomic Alleviation) programs by taking the
allocation and release sites as parameter. BPF AA programs
are loaded in the kernel to seperate the location of struct file
objects, and the exploitations will be prevented. The system
will not be taken over, though there is proabilitity that the
system may panic

A.3.2 Reproduce

To prove the results can be reproduced, we design 2 experi-
ments to thoroughly analyze the performance and memory
overhead of existing features and SeaK. To make the experi-
ments process easier, we provides virtual machines to acceler-
ate the evaluations, but the whole process may still take more
than 20 hours.

A.3.3 Installation

None

A.3.4 Basic Test

After evaluators pull the github repository and run evaluate
.sh, there will be 2 terminals pop up. In figure 1, the left
terminal 1 boots up the virtual machine, and waits to be logged
in, and the right terminal 2 has already logged in through
ssh. Evaluators can login the virtual machine with the user
name root and no password is needed. After that, evaluators
can run ls command on either terminal, and there will be
three directories and one tar file, including bpf-evaluation,
POCs, scripts and lmbench.tar.gz. The bpf directory contains
all compiled BPF prevention programs. The POCs directory
contains the exploits of vulnerabilities. The scripts directory
contains evaluation scripts that need evaluator to execute in
the virtual machine. The file lmbench.tar.gz is one of the
benchmarks.

A.4 Evaluation workflow
The specific details can be found in the Github Repo https:
//github.com/a8stract-lab/SeaK/tree/v1.1

A.4.1 Major Claims

(C1): The vulnerabilities can be protected from being ex-
ploited.

(C2): The overhead of the existing feature is the same as
stated in the paper Section 3.2 and 3.3

(C3): The overhead of the SeaK is negligible as stated in
paper Section 8.2 and 8.3

A.4.2 Experiments

(E1): [Sythesize bpf programs] [30 human-minutes + 5
compute-hour + 10GB disk]:
Execution: 1) analyze bug report to get the vulnerable,
sensitive objects. 2) build up docker image 3) compile
the specific LLVM compiler and the analyzer 4) compile
the kernel with the specific LLVM compiler 5) run the
static analyzer to get the allocation sites 6) generate and
compile the BPF program
Results: a synthsized bpf program "hotbpf_effective"
can be found under 2-source-code/linux
-5.15.106/samples/bpf.

(E2): [Test if the bpf programs can prevent the exploits] [30
mins human-hour]:
Execution: Simply execute evaluate.sh under "1-
evaluation" and two terminals will pop up. On one of the
terminals, run the bpf program which has just been com-
piled. On the other terminal, run the POCs we prepared.
Results: After the attack, in figure 2 we can see the
system is still functioning, but the POCs cannot get /
bin/bash shell.

(E3): [Test the overhead of existing features] [1 human-hour
+ 12 compute-hour]:
Execution: 1) run evaluate-vanilla.sh and run
EF_vanilla.sh, then close the virtual machine 2) run
evaluate-C1.sh and run EF_C1.sh, then close the vir-
tual machine 3) run evaluate-C2.sh and run EF_C2.
sh, then close the virtual machine 4) run evaluate-C3.
sh and run EF_C3.sh 5) run EF_analysis.sh
Results: Result can be viewed in directory ’Re-
sults’. EF_lmbench.xlsx is the result of lmbench
and EF_phoronix.xlsx is the result of phoronix.
EF_memory_overhead.pdf shows the memory overhead
of the existing feature when running lmbench.

(E4): [Test the overhead of SeaK] [24 compute-hour]:
Execution: At the beginning of this part, run evaluate
-SeaK.sh to boot up the virtual machine. For this part,
we provide two options. Because lmbench is a widely-
used but very old benchmark (back to 1990s), some of
the testing results may be unstable.

https://github.com/a8stract-lab/SeaK/tree/v1.1
https://github.com/a8stract-lab/SeaK/tree/v1.1

Figure 1: execute evaluate.sh to boot up the virtual machine, two terminals pop out.

Figure 2: The functionality of SeaK, exploitation in the right terminal cannot corrupt the system that is protected by the SeaK AA eBPF
program in the left terminal.

Option 1: Execute SeaK.sh to run the whole exper-
iments which takes about 12 hours. This option runs
lmbench 6 times (5 times for performance overhead, 1
time for memory overhead) and phoronix 1 time for each
feature. In this option, most of the data can be stable and
believable.
Option 2: Execute SeaK-precise.sh to run the whole
experiments which cost about 24 hours. This option runs
lmbench 11 times (10 times for performance overhead,
1 time for memory overhead) and phoronix 1 time for
each feature. In this option, we can effectively get rid of
most of the noise. The results can be more precise than
option 1.
Results: Result can be viewed in directory ’re-
sults’. SeaK_lmbench.xlsx is the result of lm-
bench and SeaK_phoronix.xlsx is the result of
phoronix. SeaK_memory_overhead.xlsx.pdf shows
the memory-overhead of SeaK when running lmbench.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Functional
	Reproduce
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

