
USENIX Security ’24 Artifact Appendix: Max Attestation Matters:
Making Honest Parties Lose Their Incentives in Ethereum PoS

Mingfei Zhang
Shandong University

mingfei.zh@outlook.com

Rujia Li⋆

Tsinghua University
rujia@tsinghua.edu.cn

Sisi Duan⋆†

Tsinghua University
duansisi@tsinghua.edu.cn

A Artifact Appendix

A.1 Abstract
We present staircase attack, the first attack on the incentive
mechanism of the Proof-of-Stake (PoS) protocol used in the
Ethereum 2.0 beacon chain. Our attack can make honest val-
idators suffer from penalties, even if they strictly follow the
specifications of the protocol. We show theoretically that if
the adversary controls 29.6% stake in a moderate-size system,
the attack can be launched continuously, so eventually all
honest validators will lose their incentives. We implement the
staircase attack in our artifact and evaluate the effect of the
staircase attack on a local-built testnet with 1,000 clients. The
results match our theoretical analysis. This artifact aims to
reproduce the results in Section 5 of our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our experiments can be launched using a local testnet (using
even one local machine). Additionally, as reported in the
paper, we have done responsible disclosure to the Ethereum
Foundation. The Ethereum development team fixed the attack,
and the mitigation took effect after the Deneb upgrade in
March 2024.

A.2.2 How to access

The artifact can be accessed by cloning our public Github
project. All the scripts, container images, source codes and
sample output files can be accessed via the stable URL:
https://github.com/Mart1i1n/Staircase-Attack/
tree/85c772ece91965130d290eb1df6b489a6ba59af5.

A.2.3 Hardware dependencies

The experiments do not require particular hardware. The con-
figuration of our computer is as follows: 2-core CPU, 2GB

⋆ Corresponding author.
† Sisi is also with Zhongguancun Laboratory, Shandong Institute of

Blockchains, and Beijing National Research Center for Information Science
and Technology

RAM, 100GB ROM, and a 100 Mbps bandwidth.

A.2.4 Software dependencies

We ran our experiments using Docker, which can be installed
following the instructions of https://docs.docker.com/
engine/install/. We also require Python3. The version of
the Docker Engine is at least version 24.
To draw the figures in the paper, we use the Python libraries
matplotlib and pandas. These can be installed via the pip
install command.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

After installing Docker and Python3, run the following steps:

1. Git clone the repository:
git clone https://github.com/Mart1i1n/Staircase-

Attack

2. Enter the cloned repository directory:
cd Staircase-Attack/

3. Switch to the stable version:
git checkout

85c772ece91965130d290eb1df6b489a6ba59af5

A.3.2 Basic Test

After entering the repository directory Staircase-attack
(denoted as $HOME), run the basic test by the command:
./start.sh 0

The following outputs are expected:
Input is zero, executing basic test...
[+] Building 501.3s (20/20) FINISHED
=> [internal] load build definition from geth.Dockerfile
=> => transferring dockerfile: 854B
=> [internal] load .dockerignore
=> => transferring context: 2B
...

[+] Building 229.0s (22/22) FINISHED
=> [internal] load build definition from attacker.Dockerfi

https://github.com/Mart1i1n/Staircase-Attack/tree/85c772ece91965130d290eb1df6b489a6ba59af5
https://github.com/Mart1i1n/Staircase-Attack/tree/85c772ece91965130d290eb1df6b489a6ba59af5
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

le
=> => transferring dockerfile: 1.04kB
=> [internal] load .dockerignore
=> => transferring context: 2B
...

[+] Building 473.7s (23/23) FINISHED
=> [internal] load .dockerignore
=> => transferring context: 2B
=> [internal] load build definition from beacon.Dockerfile
=> => transferring dockerfile: 1.04kB
...

[+] Building 132.1s (23/23) FINISHED
=> [internal] load build definition from beacon.modify.Dock
erfile
=> => transferring dockerfile: 1.06kB
=> [internal] load .dockerignore
=> => transferring context: 2B
...

[+] Building 35.3s (23/23) FINISHED
=> [internal] load build definition from validator.Dockerfi
le
=> => transferring dockerfile: 1.02kB
=> [internal] load .dockerignore
=> => transferring context: 2B
...

[+] Building 37.3s (23/23) FINISHED
=> [internal] load build definition from validator.modify.D
ockerfile
=> => transferring dockerfile: 1.04kB
=> [internal] load .dockerignore
=> => transferring context: 2B
...
build ethtools image at /root/usenix24-ae/Staircase-Attack

[+] Building 1.4s (12/12) FINISHED
=> [internal] load build definition from ethtools.Dockerfile
=> => transferring dockerfile: 316B
=> [internal] load .dockerignore
=> => transferring context: 2B
...

[+] Running 9/9
=> Network staircase-attack_meta Created
=> Container execute-1 Started
=> Container execute-2 Started
=> Container ethmysql Started
=> Container beacon-1 Started
=> Container beacon-2 Started
=> Container attacker Started
=> Container validator-1 Started
=> Container validator-2 Started

start testcase success

After running for 30 minutes, the experiment stops auto-
matically. The incentives of each validator in each epoch are
recorded in the file $HOME/results/reward.csv.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The expected incentive of any honest validators be-
comes lower than 0 when the ratio of Byzantine valida-
tors exceeds 29.6%. This is proven by the experiments
(E1&E2), which reproduce the results described in Fig-
ure 10, Section 5.

A.4.2 Experiments

(Overview) Our experiments are launched using 296, 310,
320, and 333 Byzantine validators, respectively. Our
script starts the experiments for all four configurations
at once and the experiment E1 is expected to finish in
96 hours. To draw the figure of our experimental result,
execute E2 and it takes about 0.5 hour to generate the
figure.

(E1): The experiment is expected to finish in 96 compute-
hours.
How to: run the experiment with the command under
$HOME :
./start.sh 24

The shell script will conduct experiments for the four
configurations sequentially. The output should be similar
to that in the basic test.
Note: Each experiment will run for 24 hours. If one
does not want to wait for experiments so long, run the
command with a smaller parameter. For example, one
can run the command with parameter 1 to run each
experiment for one hour.
Results: During each experiment, the incentive of
each validator is recorded in csv files under
$HOME/results. An example of the csv file is as fol-
lows:

Epoch Validator Index Head Target Source
0 0 44188 101183 54483
0 1 44188 101183 54483
0 2 0 -147069 -79191
0 3 44188 101183 54483
0 4 0 -147069 -79191
0 5 0 -147069 -79191

(E2): [0.5 compute-hour]: The experiment below processes
the data from the results and plots the loss rate of honest
validators.
How to: run the experiment with the command under
$HOME :
./python3 plot.py

The codes will calculate the loss rate of the first ten
honest validators and plot.
Results: The loss rate of the first ten honest validators
can be seen in $HOME/results/figures. An exam-
ple of the figure is shown in Figure.1. The loss rate of
the honest validator 0 tends to converge at 100 percent,
indicating the results of Claim C1.
Note: To accurately reproduce the results from the pa-
per, the experiment E1 needs to be run for 96 hours. This
experiment is probabilistic. If the experiment is run for
a short period of time, one may not be able to obtain
the same graph or observe the same trend as shown in
Figure 10 of the paper. We recommend running each
experiment for at least 4 hours to better observe the
trend.

Figure 1: Loss rate of an honest validator after running the
experiment for one hour.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

