
USENIX Security ’24 Artifact Appendix:
MD-ML: Super Fast Privacy-Preserving Machine Learning for

Malicious Security with a Dishonest Majority

Boshi Yuan1, Shixuan Yang1, Yongxiang Zhang1, Ning Ding1,2, Dawu Gu1,2, and Shi-Feng Sun1,2

1Shanghai Jiao Tong University, China
2Shanghai Jiao Tong University (Wuxi) Blockchain Advanced Research Center

{nemoyuan2008,yangshixuan,zhang-yx7,dingning,dwgu,shifeng.sun}@sjtu.edu.cn

A Artifact Appendix

A.1 Abstract
This artifact is a C++ implementation of the protocols pre-
sented in the paper. The artifact is a standalone program that
can be compiled and executed on any platform that supports
C++20.

The primary contribution of this paper is the improvement
of the time and communication complexities of the protocols.
Therefore, the main objectives of the evaluation are to execute
the program, assess its performance, and compare the findings
with those presented in Section 6.

The evaluation process primarily involves compiling the
source code and executing the program. The relevant statistics
are automatically printed upon completion of the program’s
execution.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns associated
with this artifact.

A.2.2 How to access

https://github.com/NemoYuan2008/MD-ML/releases/
tag/v0.1

A.2.3 Hardware dependencies

The experimental results in the paper were obtained with two
servers. However, the artifact can be executed on a single
machine.

Please make sure that the machine has at least 60 GB of
free disk space to store the generated data. It is estimated that
the generated data in the experiment will be around 49 GB.

A.2.4 Software dependencies

The artifact has been tested on Windows 11, Ubuntu 22.04
LTS, and macOS 14. The artifact requires the following soft-
ware dependencies:

• A compiler that supports C++-20 and the integer type
__uint128_t. This includes the following compilers:

– GCC-10 or later,

– Clang-10 or later,

– Apple-Clang 13.1.6 or later.

Note that Visual Studio (MSVC) is not supported. For
Windows, we recommend MinGW-w64 with g++.1

• CMake 3.12 or later.2

• The Boost C++ libraries3, version 1.70.0 or later. The
artifact only requires the header-only Boost::Asio li-
brary.

• The Eigen C++ library4, version 3.0 or later.

The following Linux softwares were used to obtain the
experimental results in the paper, but they are not required to
run the artifact:

• The Linux tc command was used to limit the bandwidth
to simulate the WAN environment. The command is
available on most Linux distributions.

• The Linux iptables command was used to measure the
communication overhead. However, the communication
overhead is also automatically printed by the program.

1https://www.mingw-w64.org/
2https://cmake.org/
3https://www.boost.org/
4https://eigen.tuxfamily.org/

https://github.com/NemoYuan2008/MD-ML/releases/tag/v0.1
https://github.com/NemoYuan2008/MD-ML/releases/tag/v0.1
https://www.mingw-w64.org/
https://cmake.org/
https://www.boost.org/
https://eigen.tuxfamily.org/


A.2.5 Benchmarks

N/A.

A.3 Set-up
A.3.1 Installation

Step 1: Install the dependencies

On Ubuntu, the dependencies can be installed with ($ denotes
the terminal prompt):

$ sudo apt install build -essential cmake
libboost -system -dev libeigen3 -dev

On macOS, the dependencies can be installed with Home-
brew:

$ xcode-select --install
$ brew install cmake boost eigen

On Windows, the dependencies can be installed manually. The
following manual steps are applicable to Windows, macOS,
and Linux.

• (For Windows only) Download and install MinGW-w64
from https://www.mingw-w64.org/.

• Download and install CMake from https://cmake.
org/.

• Download the Boost C++ Libraries from https://www.
boost.org/. Extract it somewhere and add the directory
to the environment variable PATH. There is no need to
compile the library.

• Download the Eigen C++ Library from https://eigen.
tuxfamily.org/. Extract the source code, then follow
the instructions in the file INSTALL in the extracted di-
rectory. Use “Method 2” described in the file.

Step 2: Check the compiler version

For Windows and macOS, the installation using the instruc-
tions above should provide a C++20-compatible compiler, so
you can skip this step.

For Linux, the compiler installed by apt may be outdated
and not support C++20 if you are using an older version of
Linux.

• Check the version of the compiler with the following
command: g++ --version.

• If the version is less than 10, you may need to install
a newer version of the compiler, using the command
sudo apt install g++-10 (or g++-11).

• If the installation is successful, you need to add the
option -DCMAKE_CXX_COMPILER=g++-10 to the cmake
command in the next step.

Step 3: Obtain and compile the artifact

Issue the following commands in the terminal:

$ git clone https://github.com/NemoYuan2008/MD-ML.git
$ cd MD-ML
$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Release ..
$ cmake --build .

From now on, we will denote the build directory as
MD-ML/build.

A.3.2 Basic Test

Make sure that you are in the MD-ML/build directory, then
cd ./experiments/test. Run the following command:

$ ./test_fake_offline

The program will print nothing, but it will generate some data
in the MD-ML/fake-offline-data directory.

Then open two terminals in the
MD-ML/build/experiments/test directory. In the
first terminal, run the following command:

$ ./test_party_0

The program will continuously print the following message,
indicating that the party 0 is waiting for the party 1 to connect:

Failed to connect to party 1, retry after 2 seconds...

In the second terminal, run the following command:

$ ./test_party_1

After a few seconds, the first terminal will print messages
similar to the following:

Spent 1 ms
Sent 64 bytes
Output: 2.25

and the second terminal will print a similar message without
the output value 2.25.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Using the MD-ML protocol, the communication cost
of AlexNet inference on the Tiny ImageNet dataset is
around 1319.31 MB. This is proven by the experiment
(E1) whose results are presented in Table 10 in the paper.

https://www.mingw-w64.org/
https://cmake.org/
https://cmake.org/
https://www.boost.org/
https://www.boost.org/
https://eigen.tuxfamily.org/
https://eigen.tuxfamily.org/


A.4.2 Experiments

(E1): [AlexNet on Tiny ImageNet] [15 human-minutes + 30
compute-minutes + 50 GB disk]
How to: The procedure to reproduce this experiment is
as follows:
Preparation: cd to the directory
MD-ML/build/experiments/AlexNet-ImageNet.
Then run ./AlexNet_fake_offline to generate the
fake offline data. The generation will take around
10 minutes. The generated data will be stored in the
MD-ML/fake-offline-data directory and will occupy
around 49 GB of disk space.
Execution: Open two terminals in the same directory
MD-ML/build/experiments/AlexNet-ImageNet.
In the first terminal, run the following command:

$ ./AlexNet_party_0

In the second terminal, run the following command:
$ ./AlexNet_party_1

After the parties are connected, the program will run for
less than 2 minutes.
Results: After the execution, the first terminal (running
./AlexNet_party_0) will print the total communica-
tion overhead, which should be around 1319.31 MB.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


