
USENIX Security ’24 Artifact Appendix: PIXELMOD: Improving Soft
Moderation of Visual Misleading Information on Twitter

Pujan Paudel, Chen Ling, Jeremy Blackburn, and Gianluca Stringhini

A Artifact Appendix

A.1 Abstract
This document presents the artifact of our Usenix Security’24
paper: “PIXELMOD: Improving Soft Moderation of Visual
Misleading Information on Twitter.” The core contribution of
this artifact is a reverse image search system that leverages
perceptual hashes, vector databases, and Optical Character
Recognition (OCR) to efficiently identify images candidates
of moderation, given a query image. This artifact presents the
implementation of PIXELMOD built on the vector database
setup of Milvus, populated with an image index. The artifact
also packages a companion Web application to interactively
query and preview the results retrieved from the vector search
database.

A.2 Description & Requirements
The artifacts associated with this submission are packaged as
a Docker container uploaded at the stable Zenodo URL1. We
package the end-to-end image analysis pipeline as presented
in Figure 2 of the paper in this Docker container. Additionally,
we also package a Web application via Streamlit to interface
the reverse image search system, with pre-built examples from
the dataset for demonstrative purposes. We also present an
“Upload” widget for images that evaluators want to upload by
themselves and interact with the reverse image search system.

A.2.1 Security, privacy, and ethical concerns

There are no risk for evaluators when executing this artifact
on their machines or in the cloud. All datasets used in this
work were either publicly released by other researchers or
were collected using publicly available APIs and following
those API’s terms of service.

A.2.2 How to access

The raw dataset of pre-computed PDQHash embeddings and
the metadata associated with the images are available in the
aforementioned stable Zenodo URL. We also provide the
docker containers with embeddings already indexed in the

1https://doi.org/10.5281/zenodo.12570381

Milvus system, used for the interactive web application and
evaluation scripts alongside the stable Zenodo URL. Addition-
ally, the source code used for building the vector index, web
interface and evaluation scripts are available in the companion
Github repository2.

A.2.3 Hardware dependencies

The only hardware requirement needed for this artifact is
that the evaluation system needs to have an x86 architecture.
This requirement stems from Milvus which requires a CPU
that supports one of the following instruction sets: SSE4.2,
AVX, AVX2, AVX51. Additionally, disk space and memory
of 15GB each is needed for the docker container, to load the
Milvus index for interactive queries and evaluation.

A.2.4 Software dependencies

The major software dependency necessary for the artifact
evaluation is Docker. The list of Python packages and the
corresponding versions for these packages is listed in require-
ments.txt of the Docker repository, which is installed while
building the container. It is recommended that for succesful
evaluation of the artifact, proper environmental dependen-
cies as listed above are met as described in the section “In-
structions to Download and Run PixelMod ” available in the
companion Github repository.

A.2.5 Benchmarks

The dataset used to build the Milvus index associated with
the reverse image search systems is organized in the docker
image pixelmod. The docker image pixelmod corresponds
to the index built with GTviz dataset discussed in the paper,
with 9.5K images indexed for evaluation of the system. The
interactive web application uses pixelmod as the underlying
index to retrieve visually similar matches as results.

A.3 Set-up
The setup procedure for this artifact includes ensuring appro-
priate hardware requirements and software requirements are
met.

2https://github.com/idramalab/pixelmod/tree/v1.0.0



A.3.1 Installation

The docker images associated with the artifact can be down-
loaded from the stable Zenodo URL. After downloading the
container, follow the instruction in the companion Github
repository to succesfully build and link the docker container
and docker volumes. This docker build script packages the
installation of underlying Milvus system, as well as scripts
for indexing the images in the corresponding Milvus index.

A.3.2 Basic Test

A basic functionality test ensuring all the models and datasets
are loaded properly can be verified by running the script ba-
sic_test.py on the artifact companion repository. This script
loads the Milvus index pixelmod_eval in memory, and queries
the index with 5 different example images from the dataset.
Upon running the basic test script, the script first prints num-
ber of items in each of the collections (reflecting the size of
Milvus indices), and visually similar “matches” to these 5
query images are returned. This basic test ensures that Milvus
is installed correctly, the images are indexed to the Milvus col-
lection as expected, and the query behavior of Milvus works
as expected.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Given a known misleading image as query, PIX-
ELMOD can be used to identify visually and contextually
similar images to the query images for downstream soft-
moderation purposes. This is proven by the experiment
(E1) described in paper in [Section 2.1], and illustrated
in [Figure 2].

(C2): PIXELMOD achieves a Precision score of 0.990, Recall
score of 0.979, and F1 score of 0.980 when evaluated on
GTviz. This is proven by the experiment (E2) described
in the paper in [Section 5.1 PIXELMOD vs. baselines].

A.4.2 Experiments

(E1): [Using reverse image search system of Pixelmod inter-
faced via Streamlit PIXELMOD ] [5 human-minutes +
5 compute-minutes + 15 GB disk]: PIXELMOD can be
used as a reverse image search system to query visually
misleading images, and retrieve other images from the
index that are both contextually and visually similar.
How to: The step-by-step flow to reproduce the results
of this experiment is packaged in the Python script
experiment1_streamlit.py alongside the artifact compan-
ion repository.
Preparation: Make sure the “Basic Setup” tests run
succesfully.

Execution: Once the basic setup tests are
confirmed succesfully, run the Python script
experiment1_streamlit.py and follow the instruc-
tions in the Streamlit interface.
Results: The results corresponding to Figure 3 are
presented in the Web application. We also present the
most popular images from our dataset, and the resulting
matches that PIXELMOD identifies as visually similar
for these images. Evaluators can also test the reverse
image search system with other provided images from
the dataset, or upload their own images via the image
upload widget.

(E2): [Benchmarking PIXELMOD ] [5 human-minutes + 5
compute-minutes + 1 GB disk]: PIXELMOD achieves a
Precision score of 0.990, Recall score of 0.979, and F1
score of 0.980 when evaluated on GTviz.
How to: The step-by-step flow to reproduce the results
of this experiment is packaged in the Python script
experiment2_evaluating.py alongside the artifact com-
panion repository.
Preparation: Make sure the “Basic Setup” tests run
succesfully.
Execution: Once the basic setup tests are
confirmed succesfully, run the Python script
experiment2_evaluating.py and observe the result
of PIXELMOD’s performance on the GTviz benchmark.
Results: PIXELMOD’s performance on GTviz are re-
flected through three different metrics: i) Precision,
ii) Recall, and iii)F1 score.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


