
USENIX Security ’24 Artifact Appendix: Opportunistic Data Flow
Integrity for Real-time Cyber-physical Systems Using Worst Case

Execution Time Reservation

Yujie Wang, Ao Li, Jinwen Wang, Sanjoy Baruah, Ning Zhang

Washington University in St. Louis

A Artifact Appendix

A.1 Abstract
OP-DFI is a security primitive designed to deploy Data-flow
Integrity (DFI) into real-time systems with minimal impact
on Worst-case Execution Time (WCET). OP-DFI leverages
system reservation to enforce data flow integrity within the
software, addressing the challenge of slack estimation and
runtime policy swapping to opportunistically utilize extra
time within the system. Our artifact includes the program
analysis and software instrumentation tools, complete with
end-to-end examples for demonstration. To utilize OP-DFI,
a user needs to input the source code of the software being
tested along with the timing analysis result of the hardware
platform derived from WCET analysis tools. The expected
outputs include the estimated slack and the security protection
provided. To streamline the artifact evaluation (AE) process,
we provide a pre-configured virtual machine (VM) with all
necessary dependencies installed. For added convenience,
remote VM access is available through TeamViewer.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Conducting the AE for OP-DFI does not raise any security, pri-
vacy, or ethical concerns. All programs and data are securely
stored within a VM that is hosted on a remote server, and
the AE activities are carried out inside this VM. This setup
ensures that the AE process is isolated and avoids interaction
with the reviewer’s personal or sensitive code/data.

A.2.2 How to access

We have made the source code publicly available on GitHub:
Source code. https://github.com/WUSTL-CSPL/OP-DFI/tree/

00edcc646099516f9014bbae67f4050ea1b793e0

A.2.3 Hardware dependencies

To assess our artifacts, please ensure that your host system
maintains a stable network connection to access the remote

VM via TeamViewer. Our VM is equipped with an Intel
i5-8400 4-Core Processor and 22GB of RAM. For an easy
demonstration, the final ARM program is executed in QEMU
within the VM.

A.2.4 Software dependencies

OP-DFI is developed on Ubuntu 22.04.3 LTS primarily using:

• KLEE: https://github.com/klee/klee , commit
fc83f06b17221bf5ef20e30d9da1ccff927beb17).

• SVF: https://github.com/SVF-tools/SVF , commit
06920202d216e003efcac1469fc78b12904cd2c6).

• LLVM: https://github.com/llvm/llvm-project , commit
75e33f71c2dae584b13a7d1186ae0a038ba98838).

The main slack estimator tool was developed based on KLEE.
The data-flow analysis was developed based on SVF. The
code runtime switches and software instrumentation were
developed based on LLVM. All other helper scripts were
written in Python and Shell Script.

A.2.5 Benchmarks

None.

A.3 Set-up
Note: Reviewers can skip this section. We provide a fully
configured remote VM to simplify the artifact evaluation pro-
cess, accessible through TeamViewer. As a result, the only
setup required is installing TeamViewer; no additional test
environment is needed. This section is provided solely to
document our VM setup process.

A.3.1 Installation (Optional)

Please do not re-install the environment on the given VM.
Please setup environment only on a fresh VM.
Directory Setup: The running script assumes the VM has the
following file directory.

https://github.com/WUSTL-CSPL/OP-DFI/tree/00edcc646099516f9014bbae67f4050ea1b793e0
https://github.com/WUSTL-CSPL/OP-DFI/tree/00edcc646099516f9014bbae67f4050ea1b793e0
https://github.com/klee/klee
https://github.com/SVF-tools/SVF
https://github.com/llvm/llvm-project

$ git clone \
https://github.com/WUSTL-CSPL/OP-DFI ~/
$ mv ~/OP-DFI ~/opdfi
$ mkdir ~/toolchain && cd ~/toolchain
$ mkdir klee && mkdir SVF \
&& mkdir llvm-project

Then, clone the corresponding commit version of
KLEE, SVF, and LLVM listed in Section A.2.4 un-
der directory “~/toolchain”. Then, apply patches lo-
cated in “~/opdfi/KLEE_patch”, “~/opdfi/SVF_patch”,
“~/opdfi/LLVM_patch” to “~/toolchain/klee”,
“~/toolchain/SVF”, and “~/toolchain/llvm-project” re-
spectively.

$ cd ~/toolchain/klee
$ git apply ~/opdfi/KLEE_patch/*
$ cd ~/toolchain/SVF
$ git apply ~/opdfi/SVF_patch/*
$ cd ~/toolchain/llvm-project
$ git apply ~/opdfi/LLVM_patch/*

Finally. compile them following guidance of the official
repository of klee (https://github.com/klee/klee), SVF (https:
//github.com/SVF-tools/SVF) and LLVM (https://github.com/
llvm/llvm-project) respectively. To ease the compilation
process, the major steps for building them can be found
in the directory “~/opdfi/build_scripts/”, with the
following scripts: build_klee.sh, build_svf.sh, and
build_llvm.sh.
Environment Setup: After installation, setup the correspond-
ing environmental variables by copying following command
into “~/.bashrc”.

export LLVM_DIR=~/toolchain/llvm-project/\
build
export KLEE_DIR=~/toolchain/klee/build
export SVF_DIR=~/toolchain/SVF
export KLEE_INC=$KLEE_DIR/../include
export PATH="$LLVM_DIR/bin:\
$KLEE_DIR/bin:$PATH"
export opdfi=/home/opdfi/opdfi

A.3.2 Basic Test

The successful setup of a KLEE environment can be verified
with the following commands:

$ klee --version

To check the installation of SVF, execute:

$ $SVF_DIR/Release-build/bin/wpa --version

To check the installation of LLVM, execute:

$ clang -v

If the final outputs do not indicate any errors, it can be
concluded that these dependencies are installed properly.

Table 1: Code structure.

Major
Claim

Functionality Code Results

C1

slack constraint
collection and

processing

klee: lib/*
slack_estimation/*

∼/opdfi/test/
compile_results/*

code version
generation

llvm:
code_version_generation/*

SVF:
dependency_analysis/*

C2
runtime slack

estimation
slack_estimation/* ∼/opdfi/test/

runtime_results/*
runtime code

switching
code_switch/*

 1: if(len>MAX_DATAFRAME_LEN){//WCEP constraint, len>96
 2: len=MAX_DATAFRAME_LEN;
 3: handle_error_input(); }//a long time operation that can cause WCET

compile_results/slack_constraints/9.single_constraint: (bvslt (_ bv96 32)..)
compile_results/slack_estimate_policy: 0% { 0:0 1:0 2:1 3:0 9:1 }

Figure 1: Slack constraint example.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): At compile time, OP-DFI can offline collect and pre-
pare path constraints for later runtime slack estimation.
In addition, OP-DFI can generate multiple code versions
that provide different levels of security protection for
different slack scenarios.

(C2): At runtime, OP-DFI can runtime compute slack and
perform runtime switching to different code version to
provide different level of protection under the computed
slack.

A.4.2 Experiments

The implementation code for each major claim is shown in
Table 1, with details illustrated as follows.
(E1): [Offline Slack Constraint Collection and Code Version

Generation] [1 human-minutes + 2 compute-minutes]:
How to: Conduct symbolic execution on program
source code. The symbolic execution tool, modified
based on KLEE, can automatically collect and process
path constraints.
Then, the system conducts data-flow analysis on the pro-
gram source code. The code version generation process
first duplicates the original code and then conduct secu-
rity instrumentation to deploy different DFI techniques
on the various code versions.
Preparation: The provided VM is fully configured (see
set-up details in Section A.3), with all compilation, pro-
gram analysis, and security instrumentation toolchains
set up. Thus, there are no additional steps needed to
prepare for this experiment. The sampled program is
located in ~/opdfi/src_test/crsf.cpp. For easy demonstra-

https://github.com/klee/klee
https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF
https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project

tion, QEMU is used to emulate the actual hardware,
where the WCET analysis tool cannot be applied. There-
fore, the timing result for each execution path is simu-
lated as the instruction count on the path. We provide a
script to compile OP-DFI to demonstrate the offline con-
straint collection and code version generation process.
Execution: To run these compilation, analysis and in-
strumentation processes, use the following command:

$ cd ~/opdfi/test
$ source ../compile.sh

The illustrations of these commands are as follows. The
offline compilation can be conducted using the “com-
pile.sh” script, which runs the klee executable on the sam-
ple program to generate path constraints. Then, the pro-
cessed constraints are handled by “prepare_formula.py”
to select the constraints to determine the relationship
between the constraints and different levels of slack. In
addition, the DFI protection level for different code ver-
sions is also determined as a part of the security policy.
Based on the security policy, the program code is first
duplicated into multiple code versions using the LLVM
passes located in “$LLVM_DIR/../llvm/lib/Transforms/
code_switch_llvmpasses/code_version_generation/”.
Next, each generated code version is instrumented
with different levels of DFI protection using the
SVF scripts located in “$SVF_DIR/tools/OPDFI/
dependency_analysis/”. Finally, slack estimator and
code switch units are inserted as reference monitors.
Results: The outputs of the compilation are located un-
der the directory “~/opdfi/test/compile_results”, and con-
sist of the final executable, the processed constraints for
slack estimation, the generated code versions, and the
security policy. The final executable is “./execute_me”.
The processed constraints for slack estimation are lo-
cated in “./compile_results/slack_constraints”. In this
folder, each “{constID}.single_constraint” file is a con-
straint for a program branch in SMT formula format.
The security policy between the constraint evalua-
tion result and the slack level is located in “./com-
pile_results/slack_estimate_policy”. In this file, the first
column is the amount of slack (represented as a per-
centage of WCET). The second column consists of the
expected evaluation results for each constraint: {con-
straintID:evaluationResult}. This allows the system to
eliminate a slack level at runtime if the runtime con-
straint evaluation result does not satisfy the expected
result. An example is shown in Figure 1. In the sample
code, the WCET should only occur when the branch
"if(len>MAX_DATAFRAME_LEN)" is taken, where
the branch constraint (with ID "9") is stored in the file
"9.single_constraint". Then, in the security policy file,
the evaluation result is "True/1" for the runtime evalu-
ation of this constraint to be taken, as indicated in the

last row of Figure 1. Therefore, during runtime, if its
evaluation result is "False/0", the WCET will be elimi-
nated, indicating that there is slack available for security
protection.
The generated code versions are located in “./com-
pile_results/code_versions”. In this folder, each
“code_ver.bc.v{versionID}.dfi” file is a code version
with code duplicated and DFI checks deployed on it.
To see the duplicated code, use the following commands.

$ cd ~/opdfi/test/compile_results
$ cd code_versions
$ llvm-nm code_ver.bc.v3.dfi \
| grep _version_opdfi

$ llvm-nm code_ver.bc.v1.dfi \
| grep _version_opdfi

The last two commands will show that each func-
tion’s code is duplicated with the postfix “_{ver-
sionID}_version_opdfi”.
To see the different amounts of DFI checks, use the
following commands.

$ cd ~/opdfi/test/compile_results
$ cd code_versions
$ llvm-dis ./*
$ grep opdfi_dfi \
code_ver.bc.v3.dfi.ll | wc
$ grep opdfi_dfi \
code_ver.bc.v1.dfi.ll | wc

The last two commands will approximately show the
amount of DFI checks deployed in two different code
versions (i.e., v3 and v1). This will show the number
of DFI checks that differ from each other. The protec-
tion coverage for each code version is located in “./com-
pile_results/version_info”, where the first column is the
code version ID, and the second is the protection cover-
age.

(E2): [Runtime Slack Calculation and Code Switching] [1
human-minutes + 2 compute-minutes]:
How to: With the slack estimation and code-switching
reference monitors inserted into the program code, and
the offline-generated security policy, the slack estimation
reference monitor evaluates the constraints using inputs
to obtain an estimated slack, and the code-switching
reference monitor then switches to the corresponding
code version according to the estimated slack.
Preparation: The provided VM is fully configured (see
set-up details in Section A.3), with a QEMU emulator
set up for executing on the AArch64 platform. Thus,
there is no additional step to prepare for this experiment.
The compilation step generates a final executable, which
we can run to demonstrate the runtime slack calculation
and code-switching process.
Execution: The experiments can be conducted by run-

ning the final executable “execute_me” located in the
“compile_results/” folder. To run these experiments,
use the following command to run the executable with
QEMU emulation:

$ cd ~/opdfi/test
$ source ../compile.sh
$ qemu-aarch64 \
-L /usr/aarch64-linux-gnu/ \
./compile_results/execute_me

Results: The executable will run multiple iterations
with the test inputs stored in “test_inputs.txt”. During ex-
ecution, the number of iterations, slack, and DFI protec-
tion coverage will be displayed. The runtime execution
logs are stored in “runtime_result.txt” under the “run-
time_results/” directory, where the first column is the
estimated slack (in the form of a percentage of WCET),
and the second column is the protection coverage. As
the results show, the protection level depends on the
amount of available slack, where usually more slack in-
dicates higher protection coverage. Moreover, since the
program executes a loop, which depends on the input
value, this correlation is reflected between the values in
the “test_inputs.txt” file and the runtime logs.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation (Optional)
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

