
USENIX Security ’24 Artifact Appendix: Logic Gone Astray: A Security
Analysis Framework for the Control Plane Protocols of 5G Basebands

Kai Tu, Abdullah Al Ishtiaq, Syed Md Mukit Rashid
Yilu Dong, Weixuan Wang, Tianwei Wu, Syed Rafiul Hussain

Pennsylvania State University

A Artifact Appendix

A.1 Abstract

5GBaseChecker is a scalable, and dynamic security analysis
framework for analyzing 5G basebands’ control plane pro-
tocol implementations. The framework captures basebands’
protocol behaviors as finite state machines (FSMs) through
black-box automata learning, identifies deviations between
FSMs, and uses these deviations to uncover security proper-
ties and triage violations by 5G basebands.

A.2 Description & Requirements

A.2.1 How to access

The 5GBaseChecker framework is publicly available:
https://github.com/SyNSec-den/5GBaseChecker/
tree/cb9b3d37740d288e2737c337cc5eb4154d561ac8.

A.2.2 Hardware dependencies

5GBaseChecker requires specific hardware, including a USRP
B210 radio front end for testing commercial 5G SA devices.

A.2.3 Software dependencies

We have listed the software dependencies in GitHub repos-
itory. Check the dependencies: https://github.com/
SyNSec-den/5GBaseChecker.

A.2.4 Benchmarks

None.

A.3 Setup

Clone the GitHub repository and refer to the README.md
file to install all the components.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The hybrid learning scheme helps reduce the number of
queries required to construct FSMs, as shown in Table 3.
This can be validated by the experiment (E1) described
in Section A.4.2.

(C2): We extract the FSMs sequentially and list the number
of queries required, the number of states, and the number
of transitions in Table 4. This can be validated by the
experiment (E2) described in Section A.4.2.

(C3): 5GBaseChecker shows better performance compared
to existing FSM constructors, as illustrated in Figure 5.
This can be validated by the experiment (E3) described
in Section A.4.2.

(C4): DevScan identifies more deviations than previous ap-
proaches, as presented in Table 5. This can be validated
by the experiment (E4) described in Section A.4.2.

(C5): Through DevLyzer, we extract 45 properties, which
help to automatically analyze and resolve all deviations
found between extracted FSMs. This can be validated
by the experiment (E5) described in Section A.4.2.

(C6): 5GBaseChecker achieves higher coverage than previ-
ous approaches. This can be validated by the experiment
(E6) described in Section A.4.2.

A.4.2 Experiments

(E1): Hybrid Learning Scheme Efficiency [2 human-hours
+ 15 compute-days]: This experiment demonstrates the
efficiency of the hybrid learning scheme in reducing the
number of queries during the FSM construction phase,
as shown in Table 3 of the paper.
Execution: First, run active learner without Potential
Counterexample (PCE) and check the number of queries
in each round.
$cd 5GBaseChecker_Statelearner
$./load_learner_config.sh ./learner_config/ \
Sequential_learning/Motorola.properties \
./fgue.properties
$./start_learner.sh
$./Final_queries_statistic.sh

https://github.com/SyNSec-den/5GBaseChecker/tree/cb9b3d37740d288e2737c337cc5eb4154d561ac8
https://github.com/SyNSec-den/5GBaseChecker/tree/cb9b3d37740d288e2737c337cc5eb4154d561ac8
https://github.com/SyNSec-den/5GBaseChecker
https://github.com/SyNSec-den/5GBaseChecker

Then run passive learner to synthesize a passive au-
tomata/FSM, and extract a list of PCEs by running FSM
comparator. Finally, use the extracted PCEs as input,
start the active learner again, and check the number of
queries in each round. Check how to run passive learner
and get initial PCEs from README.md in the Github
repository. After getting initial PCEs, copy initial PCEs
extracted into the active learner PCE list and start the
active learner again, then check the number of queries
again.
$cd 5GBaseChecker_Statelearner
$cd ./load_CE.sh ../fsm_comparator/ \
Initial_PCEs.txt ./CEStore/input
$./start_learner.sh
$./Final_queries_statistic.sh
Result: The result will be printed on the terminal.

(E2): Sequential FSM Extraction [20 human-hours + 27
compute-days]: This experiment demonstrates the ex-
traction of FSMs for different UEs sequentially, as listed
in Table 4 of the paper.
Execution and Result: First, load the correct PCEs and
learner configuration, same as E1.
$cd 5GBaseChecker_Statelearner
$./load_CE.sh ./CEStore/configured_CEs/ \
CE_reverse_feeding/All_CEs ./CEStore/input
$./load_learner_config.sh ./learner_config/ \
CE_reverse_feeding/RedMagic.properties \
./fgue.properties
$./start_learner.sh
$./Final_queries_statistic.sh
The result will be printed on the terminal.
Repeat the above steps for all the devices.
Then load all the extracted counterexamples
(CEs) and repeat the whole procedure. Use
/CEStore/configured_CEs/CE_reverse_feeding/
All_CEs as input to learn all UE implementations again.
The final UE FSMs are obtained after refining the
hypothesis FSMs of the UEs with all CEs.

(E3): Performance Comparison with DIKEUE* [20 human-
hours + 15 compute-days]: This experiment compares
the FSM extraction performance of 5GBaseChecker with
DIKEUE*, as shown in Figure 5 of the paper.
Execution and Result: For 5GBaseChecker:
Load the correct CEs and learner configuration, and exe-
cute the following commands.
$cd 5GBaseChecker_Statelearner
$./load_CE.sh ./CEStore/configured_CEs/ \
DIKEUE_compare/Motorola_CEs ./CEStore/input
$./load_learner_config.sh ./learner_config/ \
DIKEUE_compare/Motorola.properties \
./fgue.properties
$./start_learner.sh
$./Final_queries_statistic.sh
For DIKEUE*:

First, delete all CEs.
$cd 5GBaseChecker_Statelearner
$./delete_all_CE.sh
Then load correct learner configuration file:
$./load_learner_config.sh ./learner_config/ \
DIKEUE_compare/Motorola.properties \
./fgue.properties
Start active learner and get a number of queries.
$./start_learner.sh
$./Final_queries_statistic.sh
Repeat the above steps for all the devices.

(E4): Deviation Detection with DevScan [30 human-minutes
+ 24 compute-hours]: This experiment demonstrates
DevScan’s ability to identify deviations between FSMs
as shown in Table 5.
Execution: First, get deviations between all the FSMs
extracted by StateSynth:
$cd 5GBaseChecker/DevScan/fsm_checking/ \
fsm_equivalence_checker_5GBaseChecker/
$python3 ./Autorun.py
After executing the following commands, you should
get a JSON file deviant-queries.json under the
fsm_equivalence_checker_5GBaseChecker folder.
$python3 ./AutoAnalysis.py
$./get_deviation_num.sh
Same commands can be repeated in
fsm_equivalence_checker_BLEDiff folder for
BLEDiff and fsm_equivalence_checker_DIKEUE
folder for DIKEUE.

(E5): Deviation Resolution With DevLyzer [30 human-
minutes + ∼1 compute-hours]: This experiment demon-
strates how DevLyzer automatically resolves the ex-
tracted deviations using the given LTL properties.
Execution and Results: First follow the instructions in
GitHub repository to install NuXMV. Then execute the
following commands to run the DevLyzer.
$cd DevLyzer
$python3 ./main.py
The console will show (total number of deviations an-
alyzed) / (total number of deviations provided). It will
also display the input sequence of unresolved deviations
(if any).

(E6): Coverage Measurement [2 human-hours + 4 compute-
days]: This experiment measures the coverage achieved
by 5GBaseChecker compared to UE Security Reloaded
as shown in Figure 6.
How to: To make a fair comparison between
5GBaseChecker and UE Security reloaded, we first se-
lect a testing scope that is same across both approaches.
For this, we select the OTA message types tested by
both 5GBaseChecker and UE Security Reloaded. We do
not restrict mutations applied on the OTA messages by
these two approaches.
Execution and Results: To reproduce the coverage of

5GBaseChecker, execute the following commands.
$cd StateSynth/5GBaseChecker_Statelearner
$./load_CE.sh ./CEStore/configured_CEs/
\Sequential_learning/srsUE_CEs ./CEStore/input

$./load_learner_config.sh ./learner_config/ \
Sequential_learning/srsuec.properties \
After finishing constructing the FSM for srsUE, extract
the coverage report by executing the following com-
mands.
$lcov --capture --directory \
"Path to srsUE directory" \
--output-file coverage.info

$genhtml coverage.info --output-directory out
You can open the coverage report (index.html) using
your browser. For RRC coverage, we calculated it based
on rrc_nr.cc and rrc_nr_procedure.cc. You can
find these two files under srsue/src/stack/rrc_nr.
For NAS coverage, we calculated the coverage based on
nas_5g.cc and nas_5g_procedure.cc.
To reproduce the coverage of UE Security Reloaded,
follow the instructions in https://github.com/
vaggelis-sudo/5G-UE-SecurityTesting and exe-
cute the test cases and check the results in the same
way as 5GBaseChecker.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://github.com/vaggelis-sudo/5G-UE-SecurityTesting
https://github.com/vaggelis-sudo/5G-UE-SecurityTesting
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Setup
	Evaluation workflow
	Major Claims
	Experiments

	Version

