
USENIX Security ’24 Artifact Appendix: Your Firmware Has Arrived:
A Study of Firmware Update Vulnerabilities

Yuhao Wu†, Jinwen Wang†, Yujie Wang†, Shixuan Zhai†,
Zihan Li†, Yi He§, Kun Sun‡, Qi Li§, Ning Zhang†

† Washington University in St. Louis,
§ Tsinghua University, ‡ George Mason University

A Artifact Appendix

A.1 Abstract

ChkUp is an approach designed to Check for firmware Update
vulnerabilities by extracting program execution paths from
a firmware update procedure and identifying vulnerable ver-
ification steps within that procedure. Our artifact includes
ChkUp’s source code. Additionally, we release lists of the
collected firmware images, which can be downloaded and
unpacked using our provided scripts. To utilize ChkUp, users
need to run our program from the command line, providing
the file paths of unpacked firmware images. The expected
output comprises vulnerability identification results (i.e., vul-
nerable verification procedures) and intermediate structural,
syntactic, and semantic analysis results for programs related
to firmware updates. To streamline the artifact evaluation
(AE) process, we provide a pre-configured virtual machine
(VM) with all necessary dependencies installed. Remote VM
access is available through AnyDesk and TeamViewer.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Conducting the AE for ChkUp does not raise security, privacy,
or ethical concerns. All programs and data are securely stored
within a VM hosted on a remote server, and the AE activities
are carried out inside this VM. This setup ensures that the
AE process is isolated so that there is no security and privacy
concern associated with using artifacts.

A.2.2 How to access

We have made the source code publicly available
on GitHub: https://github.com/WUSTL-CSPL/ChkUp/
tree/973a9ecc81a320e0537a4f6625fda8704f0bf7fc.

A.2.3 Hardware dependencies

To assess our artifacts, please ensure that your host system
maintains a stable network connection for accessing the re-
mote VM via AnyDesk or TeamViewer. Our VM is equipped
with an AMD Ryzen 9 3900X 12-Core Processor, 4GB of
RAM, and a 40GB disk capacity. While no additional specific
hardware is required, please note that variations in hardware
may result in differences in runtime performance.

A.2.4 Software dependencies

ChkUp is primarily developed using Python 3.6.9, with
the environment established through Miniconda 23.11.0 on
Ubuntu 20.04.6 LTS. The main static analysis tools employed
are Angr 9.2.6 and Ghidra 10.1.2. All Python dependen-
cies are listed in the requirements.txt file. Additionally, the
README.md file in the GitHub repository provides detailed
software installation guidance.

A.2.5 Benchmarks

We have released lists of the collected firmware images on
a GitHub repository: https://github.com/WUSTL-CSPL/
Firmware-Dataset. Additionally, we provide Python scripts
to help with downloading (fw_downloader.py) and unpacking
(fw_unpacker.py) firmware images.

A.3 Set-up
Note: Reviewers can skip this section. We provide a fully
configured remote VM to simplify the artifact evaluation
process, accessible through AnyDesk and TeamViewer. As
a result, the only setup required is installing AnyDesk or
TeamViewer; no additional test environment is needed. This
section is provided solely to document our VM setup process.

A.3.1 Installation (Optional)

Linux packages: The necessary Linux packages for setting
up ChkUp can be installed by using the following commands:

https://github.com/WUSTL-CSPL/ChkUp/tree/973a9ecc81a320e0537a4f6625fda8704f0bf7fc
https://github.com/WUSTL-CSPL/ChkUp/tree/973a9ecc81a320e0537a4f6625fda8704f0bf7fc
https://github.com/WUSTL-CSPL/Firmware-Dataset
https://github.com/WUSTL-CSPL/Firmware-Dataset


$ sudo apt install git npm net-tools
$ sudo apt-get install openjdk-11-jdk

Python dependencies: Miniconda is the recommended tool
for setting up the environment. It is available for download
from the official website at https://docs.conda.io/en/
latest/miniconda.html. It can be installed by following
the instructions provided on the website. Once installed, use
the commands below to establish the Python environment:

$ conda create --name chkup python=3.6.9
$ conda activate chkup
$ cd <repository_path>
$ pip install -r requirements.txt

Npm modules: There are some npm modules required for
ChkUp, which can be installed through:

$ cd <repository_path/exec_pth_rec/jsparse>
$ npm install

Ghidra: The release file of the reverse engineer-
ing tool Ghidra is available from its repository at
https://github.com/NationalSecurityAgency/
ghidra/releases/download/Ghidra_10.1.2_build/
ghidra_10.1.2_PUBLIC_20220125.zip. Once down-
loaded and extracted, it works with the installed JDK.

A.3.2 Basic Test

The successful setup of a Python environment can be verified
with the following commands:

$ conda --version
$ python --version

To check the installation of npm, execute:

$ npm --version

Furthermore, to ensure the JDK is operational for support-
ing Ghidra, use the following command:

$ java -version

If the final outputs do not indicate any errors, it can be
concluded that these dependencies are installed properly.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): ChkUp can identify firmware update programs within
an image and uncover their execution flows.

(C2): ChkUp can identify verification procedures within a
firmware update process.

(C3): ChkUp is capable of detecting vulnerabilities in the
verification procedures of a firmware update process.

A.4.2 Experiments

(E1): [Execution Path Recovery] [3 human-minutes + 14
compute-minutes]:
Preparation: The provided VM is fully configured (see
set-up details in Section A.3) and three firmware sam-
ples have been downloaded and unpacked in the VM
(using the fw_downloader.py and fw_unpacker.py scripts
as mentioned in Section A.2.5). Thus, there is no addi-
tional step to prepare for this experiment. We provide a
script to run ChkUp with the three firmware samples for
analyzing their firmware update procedures.
Execution: The experiments can be conducted using
the chkup_run.sh, which runs the main.py script for each
sample firmware image by specifying the firmware path
and result storing path. To run these experiments, use
the following commands:
$ conda activate chkup
$ cd <repository_path>
$ ./chkup_run.sh
Note that in our configured VM, <repository_path> is
set to /home/chkup/Desktop/ChkUp.
Results: The analysis results for each firmware
sample will be printed out, while detailed anal-
ysis results are stored in the directory <reposi-
tory_path/results/firmware_name/exec_pth>. Specifi-
cally, for each firmware sample, the update flow graph
(i.e., UFG, stored as ufg-<entry_program_name>.pkl)
and control flow graphs (i.e., CFGs, stored as <pro-
gram_name>.pkl) are formatted as NetworkX graphs.
The results.json file under the result folder offers a more
explainable representation of results, containing key de-
tails about the execution paths and the connections be-
tween firmware update-related programs. The JSON
structure starts with a top-level key that specifies the
entry program’s file type, followed by its file path as
the second-level key. Subsequently, it includes nested
program entries that detail all related programs and their
interactions. Each entry includes the program type, as-
sociated files (caller and callee), interaction methods,
and additional evidence of their involvement in firmware
updates. Additionally, the pattern-matching results for
each type of program are stored in individual JSON files
under the result folder. For example, webinfo.json stores
the pattern-matching results of related web programs.

(E2): [Verification Procedure Recognition] [3 human-
minutes + 7 compute-minutes]:
Preparation: The script chkup_run.sh contains verifi-
cation procedure recognition process.
Execution: After executing chkup_run.sh, verification
procedure recognition should run automatically follow-
ing the execution path recovery.
Results: The verification procedure recognition results
can be found from the printed output and <reposi-

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_10.1.2_build/ghidra_10.1.2_PUBLIC_20220125.zip
https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_10.1.2_build/ghidra_10.1.2_PUBLIC_20220125.zip
https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_10.1.2_build/ghidra_10.1.2_PUBLIC_20220125.zip


tory_path/results/firmware_name/ver_proc> directory.
Under the directory, results.json contains JSON struc-
ture where keys indicate the program path and values
are identified verification function pairs (target function
name: identified function address) in the firmware update
procedure. There are also intermediate results for iden-
tifying verification procedures stored under the result
directory. Specifically, the constructed data flow graphs
(i.e., DFGs, in NetworkX graph format) are stored in the
dfg folder and the function similarity scores are stored
in the vuln_corpus_config folder.

(E3): [Vulnerability Discovery] [3 human-minutes + 3
compute-minutes]:
Preparation: The script chkup_run.sh contains vulner-
ability discovery process.
Execution: After executing chkup_run.sh, vulnerability
discovery should run automatically following the verifi-
cation procedure recognition.
Results: Besides the printed output, the vul-
nerability discovery result folder <reposi-
tory_path/results/firmware_name/vuln_discov> con-
tains two files named results.json and vuln_discov.log.
These files include detailed information on the identified
vulnerabilities for each firmware image, including the
vulnerability category and identified vulnerable verifi-
cation procedure details. For instance, the results.json
file contains three keys, Proper, Improper, and Missing,
where the details of proper, improper, and missing
verification procedures are listed.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation (Optional)
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


