
USENIX Security ’24 Artifact Appendix: I/O-Efficient Dynamic

Searchable Encryption meets Forward & Backward Privacy

Priyanka Mondal
UC Santa Cruz

Javad Ghareh Chamani
HKUST

Ioannis Demertzis
UC Santa Cruz

Dimitrios Papadopoulos
HKUST

A Artifact Appendix

We propose two families of DSE constructions that improve

the state-of-the-art, both asymptotically and experimentally,

while also addressing the issue of I/O efficiency. In fact, some

of our schemes enhance the in-memory performance of pre-

vious works. Technically, we revisit and enhance the lazy
de-amortization DSE construction introduced by Demertzis

et al. [NDSS’20], transforming it into an I/O-preserving ap-

proach. To demonstrate the feasibility and overhead of our

methods, we prototype them and conduct experiments using

a standardized set of benchmarks.

A.1 Abstract

This artifact appendix provides source code and build environ-

ments for downloading, compiling, and running our schemes

presented in the paper. We implemented our prototypes

on Linux kernels. The artifact includes SDa[1C], SDa[2C],

SDa[NlogN], SDa[sN], L-SDd[1C], and L-SDd[sN], compris-

ing approximately 31K lines of C++ code. For evaluation

and semantically secure encryption, we utilized OpenSSL-

AES PRF. In addition, we employed Oblivious MAP for the

SDd[PiBAS] implementation and merge-sort as the final step

in the bucket oblivious sort implementation. Our focus is on

the computation time for Search and Update queries, and we

measured these parameters for various settings. To simplify

the execution process, we provided different input arguments

for executing different settings. However, to reproduce the

results of our evaluation, the corresponding parameters and

configurations must be set before executing the artifact.

A.2 Description & Requirements

Software Requirements. We provide a C++ program that

constructs the proposed schemes in the paper. It requires an

x86-64 Linux host machine running 64-bit Ubuntu 18.04, g++

v5.5, libssl-dev, make, and nvme-cli packages for compilation

and execution. The resulting program accepts various inputs,

including the scheme name, disk type, and others. It utilizes

a configuration file that specifies the experiment size, such

as the database size, number of queries, and result size for

each query, for execution. The program establishes a database

and measures the execution time for different search/update

queries.

Hardware Requirements. The execution of this artifact

is resource-intensive and may take a significant amount of

time. Our code builds a Linux executable file and utilizes a

configuration file to specify various execution settings. The

execution requires varying amounts of disk and memory, de-

pending on the target parameters of the experiment. However,

the maximum storage needed for the experiments presented

in the paper would not exceed 500GB SSD and 2TB HDD

disks. Additionally, the required memory would not exceed

128GB for all experiments. For our experiments, we utilized

a machine equipped with an Intel Xeon E-2174G 3.8GHz

processor.

A.2.1 Security, privacy, and ethical concerns

Our artifact utilizes the "/tmp" folder for data storage and does

not access other parts of the file system. It does not utilize

the network interface and does not involve any destructive

actions.

A.2.2 How to access

We host the artifact on GitHub, which includes all the nec-

essary instructions for compiling and running the program.

Additionally, the repository provides the real datasets used in

the experiments conducted in the paper.

Repository: https://github.com/jgharehchamani/
DSE-with-IO-Locality/tree/fc5942b0d24b7fdc5d8
ee4045876d583c812382e

A.2.3 Hardware dependencies

We evaluate our schemes using HDD and SSD hard disks.

Additionally, we conduct experiments that utilize memory to

showcase the effectiveness of our algorithms. In the experi-

ments involving disk settings, we disabled the cache using

two methods: i) disabling the disk cache, and ii) clearing the

kernel’s cache memory.

These two approaches have been implemented within the

code, assuming that the HDD is available at /dev/sda and the

SSD is available at /dev/nvme0n1. These configurations can

be modified in the Utilities.cpp file.



While we provide and build our schemes, we do not impose

any other hardware dependencies apart from a standard x86

host machine required to compile and run the program.

A.2.4 Software dependencies

See A.2 for the list of software dependencies.

A.2.5 Benchmarks

For most of the experiments, we utilized randomly gener-

ated datasets with specific parameters mentioned in the paper.

These parameters can be set in the configuration file (con-

fig.txt), and the code generates the corresponding datasets for

execution.

In addition to the random dataset, we also conducted

search experiments on a real dataset consisting of 22

attributes and 6,123,276 records of reported crime inci-

dents in Chicago. This dataset is available at the follow-

ing URL: https://data.cityofchicago.org/public-safety/crimes-

2001-to-present/ijzp-q8t2. However, we only used the 5th and

7th attributes, and their corresponding settings and data can

be found in the code repository.

A.3 Set-up
A.3.1 Installation

To build the artifact, please refer to the tutorial hosted in the

main GitHub repository at README.md.

The steps required for the setup are as follows:

• Download the code repository and build the artifact.

• Configure the target settings in the config.txt file.

• Execute the artifact with the relevant input arguments.

A.3.2 Basic Test

After building the artifact, executing the executable file lo-

cated in dist/Debug/GNU-Linux with the argument "test" will

run a basic test using the amortized PiBAS scheme. The test

involves inserting some data and performing a subsequent

search.

A.4 Evaluation workflow
We list all our claims and the experiments we performed to

support them.

A.4.1 Major Claims

(C1): SDa[PiBAS] and SDd[PiBAS] have the worst search

performance among all other schemes for large result

sizes

(C2): The SDa[NlogN] and L-SDd[NlogN] schemes achieve

the best search performance in the amortized and de-

amortized setting

(C3): SDa[2C] performs better than SDa[1C] for small

search result sizes

(C4): The search execution time for SDa[1C] for result sizes

bigger than 105 remains approximately constant

(C5): When the block size is increased from 32B to 512B,

the search time of all schemes increases, but the gap

between SDa[2C]/SDa[1C] and SDa[PiBAS] decreases

(C6): Amortized and de-amortized versions of PiBAS, 1C,

and NlogN have similar search performance

(C7): The search time of all schemes increases as the

database size increases

(C8): All our schemes are significantly faster than

SDa[PiBAS] and SDd[PiBAS] in the search operation

(C9): When keeping fewer levels than logN, SDa[NlogN]/L-
SDd[NlogN] outperform PiBAS and 1C based schemes

in terms of search time

(C10): As the cache size increases, all schemes’ perform bet-

ter and their search time reduces. However, SDd[PiBAS]

benefits more from the cache than others

(C8): All our schemes outperform SDd[PiBAS] in search for

big enough result sizes (>1K) when the cache is enabled

(C11): When all data is cached (assuming it fits entirely in

memory), L-SDd[NlogN] outperforms other schemes in

the search operation

(C12): Our experiments on real datasets show that our

schemes clearly outperform both SDa[PiBAS] and L-
SDd[PiBAS] in search performance, and we reach simi-

lar conclusions as synthetic dataset

(C13): The update cost in the amortized schemes depends

on the number of previously inserted indexes and it in-

creases when more indexes need to be merged

(C14): SDa[PiBAS] has the best update cost for small

merges and the worst update cost for big merges

(C15): L-SDd[1C] outperforms other schemes in the update

operation for database sizes above 100K
(C16): L-SDd[NlogN] has the worst update performance

among the de-amortized schemes in the memory set-

ting

(C17): We observe that L-SDd[1C] has the most efficient

update in all database sizes in the HDD setting

A.4.2 Experiments

(E1): Search Computation Time [10 human-minutes + 12

compute-hours + 500GB SSD + 2TB HDD]: This set

of experiments corresponds to claims C1-C8 and mea-

sures the search computation time of all our schemes and

the competitors. In these experiments, we vary different

parameters, including result size, database size, block

size, s parameter, and cache size, and measure the search

computation time of each scheme.



How to: Please follow the build and run instructions in

Sections A.3.1 and A.3.2.

Execution: The artifact takes three arguments as input

(SCHEME_NAME, HARDWARE, CACHE_SIZE). The

first parameter determines the scheme type, which can

be selected from the following list:

Amortized Schemes: SDa[PiBAS] / SDa[1C] / SDa[2C]

/ SDa[NlogN] / SDa[3N] / SDa[6N]

DeAmortized Schemes: SDd[PiBAS] / L-SDd[1C] / L-

SDd[NlogN] / L-SDd[3N] / L-SDd[6N]

The second parameter indicates the type of memory we

want to use, which can be selected among HDD, SSD,

and Memory. Finally, CACHE_SIZE denotes the amount

of cache memory we want to use to store data in memory.

Furthermore, to change the block size of schemes, you

need to modify AES_KEY_SIZE in the types.hpp file.

Using the above parameters, it is possible to run different

types of experiments mentioned in claims C1-C8.

Results: After running the artifact with the appropriate

parameters, it performs some setup steps to build the

synthetic dataset. After that, it runs search queries (ac-

cording to the configuration mentioned in the config.txt

file) and measures the search computation time.

(E2): Real Dataset [10 human-minutes + 3 compute-hours

+ 100GB SSD + 100TB HDD]: This experiment corre-

sponds to claim C12 and measures the search compu-

tation time of all our schemes and the competitors on a

real dataset (two attributes of the crime dataset).

How to: Please follow the build and run instructions in

Sections A.3.1 and A.3.2.

Execution: The execution of the artifact is the same as

E1 (A.4.2), except that line 79 needs to be uncommented

and line 80 needs to be commented in the main file. This

change allows the database generator to use the existing

dataset instead of the synthetic one. Additionally, the

appropriate configuration in the config.txt file, which is

available in the README.md file, needs to be used.

Results: After running the artifact with the appropriate

parameters, it performs some setup steps to build the real

dataset. After that, it runs search queries (according to

the configuration mentioned in the config.txt file) and

measures the search computation time.

(E3): Update Computation Time [10 human-minutes + 5

compute-hours + 100GB SSD + 100TB HDD]: This ex-

periment corresponds to claims C13-C17 and measures

the update computation time of all our schemes and the

competitors on a synthetic dataset after setting up the

dataset.

How to: Please follow the build and run instructions in

Sections A.3.1 and A.3.2.

Execution: The execution of the artifact is the same

as E1 (A.4.2). Note that the target dataset and queries

should be set in the config.txt file.

Results: After running the artifact with the appropriate

parameters, it performs some setup steps to build the

synthetic dataset. After that, it runs search queries (ac-

cording to the configuration mentioned in the config.txt

file) and finally executes an update query over the target

dataset using the input scheme, measuring the update

computation time. Note that the search computation time

can be commented out if it is not needed.

A.5 Version
Based on the LaTeX template for Artifact Evaluation

V20231005. Submission, reviewing and badging methodol-

ogy followed for the evaluation of this artifact can be found at

https://secartifacts.github.io/usenixsec2024/.


