
USENIX Security ’24 Artifact Appendix
PURL: Safe and Effective Sanitization of Link Decoration

Shaoor Munir
UC Davis

smunir@ucdavis.edu

Patrick Lee
UC Davis

pelee@ucdavis.edu

Umar Iqbal
Washington University in St. Louis

umar.iqbal@wustl.edu

Zubair Shafiq
UC Davis

zubair@ucdavis.edu

Sandra Siby
Imperial College London

s.siby@imperial.ac.uk

A Artifact Appendix

A.1 Abstract

This artifact contains the necessary code required to first,
crawl websites using a customized version of OpenWPM,
second, create a graph representation of crawl using a pro-
cessing pipeline, and third, to run the classification module
for PURL.

A.2 Description & Requirements

Following are the hardware and software requirements to run
this artifact:

• Linux operating system (Ubuntu 18.04+)

• Memory: 64GB RAM or higher

• Python 3.9+

• Network connectivity (required for initial website crawl
and to download filter lists)

A.2.1 Security, privacy, and ethical concerns

There are no security and ethican concerns. The initial crawl
spawns multiple Firefox instances and visits websites pro-
vided by the user. Although the generated profiles are tempo-
rary and not link-able to the user, the IP address used to visit
those websites might be tracked and stored by different actors
present on those websites.

A.2.2 How to access

The artifact is available the GitHub repository stable tree
link: https://github.com/shaoormunir/purl/tree/0b
f3b05de6b0f2805eaf4e34d5402e473438f731

A.2.3 Hardware dependencies

There are no specific hardware requirements, the crawl can
work with the memory and computation power required to
spawn a Firefox instance. Similarly, the processing step and
the classification step can also be run on any decently specced
computers, however, due to the nature of graph creation and
to speed up the classification pipeline (and avoid occasional
crashes due to memory spikes) a processor with more than 4
cores and more than 64 GB of memory is recommended.

A.2.4 Software dependencies

The provided install.sh script creates a conda environment and
installs required dependencies. Python 3.9+ is recommended
to simplify the process.

A.2.5 Benchmarks

None.

A.3 Set-up
To run PURL, you first need to run OpenWPM on a select
subset of websites. PURL relies on a customized version of
OpenWPM which is included in the OpenWPM folder of this
repository.

Step 1: Install OpenWPM Dependencies

First, navigate to the OpenWPM folder in the repository:

cd OpenWPM

Next, install the required dependencies by running the pro-
vided installation script:

./install.sh

(In case there’s an error which says that gcc is missing from
your system, run sudo apt install build-essential)

https://github.com/shaoormunir/purl/tree/0bf3b05de6b0f2805eaf4e34d5402e473438f731
https://github.com/shaoormunir/purl/tree/0bf3b05de6b0f2805eaf4e34d5402e473438f731

This script will create a conda environment named
openwpm and install all necessary dependencies. Once the
installation is complete, activate the conda environment:

conda activate openwpm

We will use this environment for the rest of the pipeline.

Step 2: Crawl Websites Using OpenWPM

To begin crawling websites, create a .csv file containing the
list of websites you want to crawl. Ensure the URLs are listed
under the url column and include the protocol (http/https).
Here is an example of the CSV format:

u r l
h t t p s : / / www. example . com
h t t p s : / / www. example2 . com

With your .csv file ready, run the crawl using the following
command from within the OpenWPM folder:

python3 crawl_sites.py
--websites <path_to_csv_file >
--output_dir <output_directory >
--num_browsers <number_of_browsers >
--starting_index <starting_index >
--log_file <log_file >
--third_party_cookies <always|never >

Explanation of Arguments:
• -websites: Path to the .csv file with the list of web-

sites to crawl.

• -output_dir: Path to the directory where the crawl
data will be stored.

• -num_browsers: Number of browsers to use for the
crawl (recommended: 5-10).

• -starting_index: Index of the first website in the
.csv file to crawl.

• -log_file: Path to the log file where crawl logs will be
stored.

• -third_party_cookies: Whether to allow third-party
cookies (always or never).

Note: OpenWPM processes websites in batches of 1,000.
If your CSV file contains fewer than 1,000 websites, a single
output file will be generated. For more than 1,000 websites,
multiple output folders will be created, each containing up
to 1,000 websites’ data. The output files will be stored in
the specified output_directory. Each output folder will
contain the following two important files:

• crawl-data.sqlite (SQLite database containing the
crawl data).

• content.ldb (LevelDB database containing the content
data such as JavaScript loaded on the website).

Step 3: Run Preprocessing for PURL

The next step involves generating a graph and its correspond-
ing features for each website. To do this, navigate to the
Pipeline folder and run the following command:

cd ../Pipeline
python3 run.py
--features <path_to_feature_file >
--folder <crawl_data_folder >
--tag <file_tag >

If running the above command results in the following er-
ror: OSError: "enchant-2: cannot read file data:
Is a directory, then run this command first:

sudo apt install libenchant -2-dev &&
export PYENCHANT_LIBRARY_PATH=
/usr/lib/x86_64 -linux -gnu/libenchant -2.so

Explanation of Arguments:
• -features: Path to the file containing the features to

extract (default: features_new.yaml).

• -input_data: Path to the folder where the crawl data
was stored. For example, if the data was stored in a
datadir directory within the OpenWPM folder, the path
should be ../OpenWPM/datadir.

• -tag: Tag to add to the output files. This helps differen-
tiate between multiple experiments.

Running this command will generate four files for each run
of crawled data:

• features_n.csv (features to be used by classifier to
predict tracking/non-tracking use of link decoration)

• graph_n.csv (graph representation of websites)

• exfils_n.csv (storage value exfiltration observed
through link decorations and payloads)

• labels_n.csv (labels of link decorations observed dur-
ing the crawl)

Where n is the index of the run.
These files will be stored in the same directory as the

run.py script.

Step 4: Run the Classification Pipeline for PURL

Navigate to the classification folder within the Pipeline
directory:

cd classification

Run the classification pipeline with the following com-
mand:

python3 classify.py
--result_dir <result_directory >
--iterations <number_of_iterations >

Explanation of Arguments:

• -result_dir: Path to the directory where the classifi-
cation results will be stored.

• -iterations: Number of iterations needed to cover the
complete dataset. For instance, if 9 feature files were
generated in the previous step (from features_0.csv
to features_8.csv), the number of iterations should
be 9.

This command will execute the classification pipeline
and store the results, feature importances, and other met-
rics, along with the model save files, in the specified
result_directory.

A few important files that are produced as a result of this
step are:

• accuracy: This file contains the accuracy metrics of
each fold of the training step. This can be used to deter-
mine the best model to pick for the next step (another file
scores contains the confusion matrices for each fold
for more information). The accuracy number here is
calculated against the ground truth which is described in
detail in Section 4.1 of the accepted paper.

• tp_n, where n ranges from 0 to 9: Shows the predictions
of each trained model in a fold against the selected test
data. The resulting file has the following structure:

Ground Truth Label |$|
Model Prediction |$|
Link Decoration Name |$|
Visit ID

• model_n.sav, where n ranges from 0 to 9: Checkpoints
of the trained models. These checkpoints can be used to
run the best performing model in the next step.

Step 5: Run the Best Model on the Complete
Dataset

Finally, run the best model on the complete dataset. Nav-
igate to the classification folder within the Pipeline
directory:

cd classification

Execute the following command:

python3 classify_with_model.py
--result_dir <result_directory >
--model_path <model_save_file_path >
--iterations <number_of_iterations >
--generate -filterlist/--no-generate -filterlist
--label_base_path <base_path_for_labels >

Explanation of Arguments:

• -result_dir: Path to the directory where the results
will be stored.

• -model_path: Path to the saved model file, this model is
the best performing model from the previous step (based
on accuracy score or any other chosen metric).

• -iterations: Number of iterations needed to cover the
complete dataset.

• -generate-filterlist/-no-generate-filterlist:
Option to generate a filterlist based on the
model results (-generate-filterlist or
-no-generate-filterlist).

• -label_base_path: The base directory and file name
path for the labels. For example, if the labels
are stored in ../Data/, and the labels are named
labels_0.csv, labels_1.csv, etc., the base path
would be ../Data/labels_.

Running this step will produce three different files:

• filterlist.txt: This file will contain all the track-
ing link decorations along with the website on which
they were observed, making it easy to block such link
decorations.

• results.csv: This file contains information about each
link decoration and the label assigned to the link deco-
ration by the model. The CSV file contains three major
pieces of information: features of the link decoration
as observed during the crawl, the label of the link deco-
ration in the Ground Truth (Negative for non-tracking,
Positive for tracking, and Unknown if missing in ground
truth), and the label assigned by the model.

• feature importance: This file contains the most im-
portant features used by the model to identify tracking
link decorations, related to the results discussed in the
Appendix of the cited paper.

A.3.1 Installation

Dependencies will be installed in the previous step.

A.3.2 Basic Test

Run the following to test if the basic functionality is working:

conda activate openwpm
python3 demo.py

This should crawl 10 test sites, if the crawl finishes without
any issues, then the crawling pipeline is functioning without
any issues.

A.4 Evaluation workflow
The evaluation can be divided into two different types:

• Evaluating on sites mentioned in the PURL paper.

• Evaluating on any set of sites.

To evaluate on the sites mentioned in the paper, run the
pipeline on the sites.csv file present in OpenWPM directory.
To evaluate on any other random set of sites, the reviewer
can provide their own set of sites based on the CSV format
described in previous section.

A.4.1 Major Claims

The major claims of the paper "PURL: Safe and Effective
Sanitization of Link Decoration" regarding this system are:

• PURL achieves 98% accuracy in classifying tracking
link decorations. This can be verified by checking the
accuracy of the model on the test data. The accuracy
of the model can be found in the accuracy file generated
in step 4.

• PURL is able to generate a filter list containing track-
ing link decorations for each website provided. This
can be verified by checking the filter list generated in step
5. The filter list contains all the tracking link decorations
along with the website on which they were observed.
The filter list can be used to block such link decorations.

A.4.2 Experiments

(E1): [100 sites Experiment] [30 human-minutes + 1 compute-
hour + 10GB disk]: This is a smaller experiment to test
PURL’s results on 100 sites.

How to: Use sites-100.csv in OpenWPM folder to
perform the crawl, and then each subsequent step
is performed on the resultant crawl.

Preparation: Installation and successful run of openwpm env-
iornment as described in step 1.

Execution: Follow steps 2 to 5.

Results: PURL will achieve an accuracy of around 98% on
the link decorations observed during the crawl.
The exact number will be variable depending on
the conditions of the crawl.

(E2): [20K sites Experiment] [30 human-minutes + 200
compute-hour + 500GB disk]: This is the larger ex-
periment to test PURL’s results on 20000 sites.

How to: Use sites.csv in OpenWPM folder to perform
the crawl, and then each subsequent step is per-
formed on the resultant crawl.

Preparation: Installation and successful run of openwpm env-
iornment as described in step 1.

Execution: Follow steps 2 to 5.

Results: PURL will achieve an accuracy of around 98% on
the link decorations observed during the crawl.
The exact number will be variable depending on
the conditions of the crawl.

A.5 Evaluation Workflow with Large Dataset
The repository provides a dataset for 20,000 websites that can
be used to run the pipeline’s steps 4 and 5. The data can be
downloaded from the following link: https://zenodo.org
/records/12667973.

After downloading the dataset, use the following com-
mands to run steps 4 and 5:

ls *tar.xz |xargs -n1 tar -xvzf
cd classification
python3 classify.py
--label_base_path "../ labels_new_"
--iterations 20
python3 classify_with_model.py
--model_path <model_path >
--generate -filterlist
--label_base_path "../ labels_new_"
--iterations 20

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://zenodo.org/records/12667973
https://zenodo.org/records/12667973
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Evaluation Workflow with Large Dataset
	Version

