
USENIX Security ’24 Artifact Appendix: Closed-Form Bounds for
DP-SGD against Record-level Inference

Giovanni Cherubin*

Microsoft Security Response Center
Boris Köpf

Microsoft Azure Research

Andrew Paverd
Microsoft Security Response Center

Shruti Tople
Microsoft Azure Research

Lukas Wutschitz
Microsoft M365 Research

Santiago Zanella-Béguelin∗

Microsoft Azure Research

A Artifact Appendix

A.1 Abstract
Our paper presents a new approach to evaluate the privacy of
machine learning models against specific record-level threats,
such as membership inference (MI) and attribute inference
(AI), without the indirection through differential privacy (DP).
We focus on the popular DP-SGD algorithm and derive closed-
form bounds for the Bayes Security metric. Our artifacts allow
reproducing all figures and numerical results that appear in
the accepted paper. The code is split into two parts: Part-A
contains experiments to assess the quality of our theoretical
bounds and compare them with prior work; Part-B contains
experiments to evaluate our bounds on real datasets. The
artifacts consist of publicly accessible source code hosted on
GitHub.

A.2 Description & Requirements
Part-A is provided as a Jupyter notebook as this is a com-
monly used format for running these types of experiments.
Part-B is implemented as an extension of an example script
provided with the Opacus library; we made this choice to
illustrate how one might incorporate our methods into an ex-
isting library. Together, both parts reproduce the following
figures and numerical results:

Result Code

Figures 2-7 Part-A
Numerical results in Section 4 (DP-SGD pa-
rameters selection), Section 4.2 (TPR@FPR),
Section 6 (Privacy parameters)

Part-A

Figures 1, 8, and 9 Part-B

*Corresponding author.

In addition to code for reproducing our experiments
(Part-A, Part-B), we provide a web-based interactive tool,
publicly accessible at https://microsoft.github.io/
dpsgd-calculator. As described in Section A.5, this tool is
based upon one of our manuscript’s results and it exemplifies
how one might use them in practice. This tool is not needed to
reproduce our main claims in this artifact; it is an additional
byproduct of our work illustrating the use of our results in
practical scenarios.

A.2.1 Security, privacy, and ethical concerns

We do not anticipate that executing our artifacts will lead to
any increased risk of security, data privacy, or ethical concerns.
All data used in our evaluations is either artificial data or
drawn from public datasets.

A.2.2 How to access

The code for reproducing our experiments is available at:
https://github.com/microsoft/dpsgd-calculator/
tree/f0222fa9308e6b65b006ea15680698da70e08951/
submission-code.

A.2.3 Hardware dependencies

Part-A. Commodity hardware is sufficient for running the
code contained in the Jupyter notebook.
Part-B. These experiments require training machine learn-
ing models. While it may be possible to do this on CPU,
an accelerator is recommended for performance reasons. We
tested this on NVIDIA Tesla K80 and V100 GPUs, but other
accelerators supported by PyTorch could be used instead.

https://microsoft.github.io/dpsgd-calculator
https://microsoft.github.io/dpsgd-calculator
https://github.com/microsoft/dpsgd-calculator/tree/f0222fa9308e6b65b006ea15680698da70e08951/submission-code
https://github.com/microsoft/dpsgd-calculator/tree/f0222fa9308e6b65b006ea15680698da70e08951/submission-code
https://github.com/microsoft/dpsgd-calculator/tree/f0222fa9308e6b65b006ea15680698da70e08951/submission-code


A.2.4 Software dependencies

Experiments were run on Ubuntu 22.04 LTS, with
Python 3.10. Python dependencies are specified in a
requirements.txt file, as explained below.

A.2.5 Benchmarks

Part-B uses the Purchase-1001 and Adult2 datasets. Our
code automatically fetches and processes the required data.

A.3 Set-up
A.3.1 Installation

Start by cloning the repository and checking out the stable
commit hash of the artifact.

git clone \
https://github.com/microsoft/dpsgd-calculator

cd dpsgd-calculator
git reset --hard f0222fa

Please ensure that you use an environment with Python
3.10. For Part-B, if you are using an NVIDIA GPU, ensure
that NVIDIA drivers and CUDA are properly set up. The latter
can be checked by running nvidia-smi from a terminal.

From the submission-code folder, install the pinned
Python dependencies by running:

pip install -r requirements.txt

To avoid any conflicts with local installations, you may want
to do this in a virtual environment (e.g., using venv or Conda).

A.3.2 Basic Test

If using an NVIDIA GPU, you may want to check that
PyTorch is able to use it. You can do this by checking that
the following Python program prints True:

import torch
print(torch.cuda.is_available())

A.4 Evaluation workflow
A.4.1 Major Claims

(C1, Part-A): A mixture of Gaussian distributions as de-
scribed in the paper (Proposition 4) can be approximated
by a Gaussian distribution, with an error that depends
on the parameters p,T,σ. In the specific case T = 1, we
can compare our error (upper) bound to the actual error,
and show that it overestimates the actual error (Figure 2).
This figure confirms that our error estimate is indeed an
upper bound for the true error.

1https://github.com/privacytrustlab/datasets/blob/
master/dataset_purchase.tgz

2https://hf.co/datasets/scikit-learn/adult-census-income

(C2, Part-A): We demonstrate that the privacy estimates
produced by our proposal match existing techniques in
computing bounds for membership inference (MI) (sub-
claim C2.a), while requiring orders of magnitude less
computation time than prior work (sub-claim C2.b).

(C3, Part-B): We use our new approach to compute
bounds for attribute inference (AI), and observe that
DP-SGD is significantly more secure against AI than
MI. This is important because, if an application requires
security against AI but not MI, one can achieve a better
utility whilst maintaining acceptable privacy (Figure 1).

A.4.2 Experiments

Part-A: experiments E1-E2

Experiments E1-E2, supporting the respective claims C1-C2,
are based on the same Jupyter notebook. They have the
following steps in common:

Preparation: The code for these experiments is in
submission-code/. Follow the instructions in Section A.3
to install Jupyter and all other Python requirements.

Execution: From the directory submission-code/, start
a Jupyter instance from the terminal, by running jupyter
notebook. Open the link that is shown (normally, https:
//localhost:8888) and open the evaluation.ipynb note-
book. Starting from the top of the notebook, execute all the
cells until the sections specified for E1 and E2 below.

(E1): Gaussian approximates a Gaussian Mixture (1 human-
minutes + 2 compute minutes + negligible disk): This
experiment computes the approximation error commit-
ted by approximating a Gaussian Mixture distribution
with a single Gaussian via numerical integration, and it
compares it to the upper bound proven in Proposition 4.
Execution: Execute all the cells until (and including)
the section “Figure 2: When is approximation of mixture
to Gaussian a good approximation?”.
Results: The resulting figure matches Figure 2.

(E2): Comparison to PLD accountant (1 human-minutes +
5 compute minutes + negligible disk): This experiment
compares our MI risk calculation method to the PLD
accountant. The former is based on a closed-form expres-
sion. The latter estimates the DP parameters (ε,δ), and
from them we obtain the MI risk by setting ε ≈ 0. Our
first claim (C2.a) is that the two methods produce similar
estimates for a wide range of parameters. Our second
claim (C2.b) is that our method is orders of magnitude
faster than the PLD accountant.
Execution: Run all the cells until (and including) sec-
tion “Figure 4: comparison with PLD” for claim C2.a;
execute until (and including) “Figure 5: Computational
efficiency comparison” for claim C2.b.
Results: The first part produces an identical figure to
Figure 4, and it also produces all the figures that are

https://github.com/privacytrustlab/datasets/blob/master/dataset_purchase.tgz
https://github.com/privacytrustlab/datasets/blob/master/dataset_purchase.tgz
https://hf.co/datasets/scikit-learn/adult-census-income
https://localhost:8888
https://localhost:8888


present in Figure 10 in Appendix B in the paper. Since
the PLD accountant we compare against does not work
well for p = 0.0001,σ = 0.5, expect a number of errors
to be reported when running the first cell. The second
part produces a figure that is equivalent to Figure 5. Note:
the figures may not be identical, since this experiment de-
pends on timing measurements. However, we expect that
the claim that “our method is orders of magnitude faster”
should hold regardless of the computational hardware.

(E2-extra): Using Corollary 7 to pick DP-SGD hyperparam-
eters (1 human-minutes + 1 compute minutes + negligi-
ble disk): This experiment shows how to use Theorem
6 to guarantee a certain level of Bayes security against
MI attacks. It produces Figure 3 in the paper.
Execution: Evaluate all the cells in the section “Figure
3: Membership inference bound from Corollary 7”.
Results: A figure is produced that matches Figure 3 in
the paper. The relation p ≈ 0.00035σ reported in the
DP-SGD parameter selection paragraph in the paper
is computed from Equation (4). The choices of σ for
the Adult and Purchase-100 experiments in Section 6
are similarly derived. A plot not included in the paper
illustrating how Bayes security varies with the number
of DP-SGD steps for different values of σ is produced.

(E2-extra): Relation between Bayes security and MI advan-
tage and TPR@FPR metrics (1 human-minutes + 10
compute minutes + negligible disk): This experiment
compares the Bayes security metric to other MI metrics.
Execution: Run all the remaining cells in the notebook.
Results: This produces the plots in Figures 6 and 7 in
the paper. The last cell in the notebook uses the PLD
accountant to numerically compute the membership in-
ference TPR@FPR for some exemplary values and com-
pares it to approximations via Bayes security.

Part-B: experiment E3

(E3): Security comparison w.r.t. MI and AI (10 human min-
utes + 3 compute-hours + 1.2GB disk): In our paper, se-
curity against MI is measured in terms of worst-case data
and security against AI is measured in a data-dependent
fashion (i.e., specific to the given dataset). In this experi-
ment, we compare these two security evaluations.
Preparation: The code for these experiments (Part-B)
is in submission-code/real-data-experiments/.
Please follow the instructions in Section A.3 to install
Jupyter and all other Python requirements.
Execution: From a command line, run

bash launch-adult.sh
bash launch-purchase100.sh

This will create 5 log files (one per run) for
each dataset: adult-approximate-{1..5}.jsonl and
purchase100-{1..5}.jsonl. To plot the results, open
the Jupyter notebook plot_results.ipynb. To pro-

duce Figure 1 (which substantiates claim C3), run all the
cells in the notebook until (and including) the section

“Privacy vs utility”.
Results: The plot obtained when running the notebook
should be similar to the one appearing in Figure 1 in
our paper; slight differences may be present due to noise
in the training process, but no major difference is to
be expected. The results indicate that, according to the
AI analysis, the model can be considered more secure
for higher levels of utility (model’s accuracy). This is
attributable to two factors: i) it is (provably) easier to
protect against AI attacks than MI; ii) measuring secu-
rity for a specific dataset (data-dependent analysis) can
provide utility advantages compared to a worst-case data
study (data-independent security analysis).

A.5 Notes on Reusability
Beyond reproducing our experiments, we hope the techniques
described in this paper will be adopted in practice.
Interactive tool: We implemented an interactive tool

that uses our closed-form bounds to visualize
the security of a model trained with DP-SGD
against MI with chosen hyperparameters. We
host this tool as a static webpage at https:
//microsoft.github.io/dpsgd-calculator
and make available its code at https://github.com/
microsoft/dpsgd-calculator/tree/gh-pages.

Integration into existing pipelines: Our MI and AI analy-
sis techniques can be integrated into training pipelines
without requiring modification of existing libraries. For
example, our code in Part-B shows how to extend a
training script from the popular Opacus library. This did
not require any changes to the Opacus code base. Simi-
lar approaches can be used to integrate our techniques
into other training pipelines.

Integration into Opacus: It is also possible to integrate
our techniques directly into the Opacus library. Opacus
currently integrates its DP accountant functionality via
the PrivacyEngine class. Internally, an object of this
class is updated by a PyTorch’s optimizer at every DP-
SGD step, enabling estimation of the respective (ε,δ)
values. A similar approach could be used to integrate
our techniques into Opacus. Since our data-dependent
AI analysis requires access to the training data (batch),
the PrivacyEngine class would need to be extended to
provide access to batch data.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://microsoft.github.io/dpsgd-calculator
https://microsoft.github.io/dpsgd-calculator
https://github.com/microsoft/dpsgd-calculator/tree/gh-pages
https://github.com/microsoft/dpsgd-calculator/tree/gh-pages
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


