
USENIX Security ’24 Artifact Appendix: Shesha: Multi-head
Microarchitectural Leakage Discovery in new-generation Intel Processors

Anirban Chakraborty, Nimish Mishra and Debdeep Mukhopadhyay
Indian Institute of Technology, Kharagpur

A Artifact Appendix

A.1 Abstract

Shesha is a transient execution finding tool for modern Intel
CPUs. It leverages the principles of particle swarm optimiza-
tion (PSO) to automatically generate instruction sequences
to trigger novel transient leakage paths in the processor. This
artifact consists of the shesha tool, the proof-of-concept at-
tack building blocks presented in the paper and the Fused
Add-Multiply based leakage attack codes. The repository also
contains the asm instruction sequences that can trigger differ-
ent transient execution events, as tested on our experimental
platform Alder lake (12th Gen Intel(R) Core(TM) i7-12700 :
Microcode version 0x34) and Rocket Lake (11th Gen Intel(R)
Core(TM) i5-11500 : Microcode version 0x57).

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The evaluation of Shesha requires installing Python pack-
ages and accessing Hardware Performance Counters (HPCs).
Therefore, the user must have sudo access in the system to run
the artifact. The attack codes and PoCs are provided as-is for
the purpose of artifact evaluation and reproducing the results.
The authors shall not be held responsible for any problems
caused by using the provided codes for other purposes.

A.2.2 How to access

The artifact is available in GitHub repository: https://
github.com/SEAL-IIT-KGP/shesha/releases/tag/v2
(latest release; stable link).

A.2.3 Hardware dependencies

To run the artifact, you need a machine with modern Intel
client processors (11th, 12th, and 13th Gen) or Xeon proces-
sors (3rd and 4th Gen), running Ubuntu OS natively (not on
a virtual machine). You need to enable hyper-threading for
the attacks (the tool does not require hyperthreading). Addi-
tionally, about 5GB disk and 16GB RAM is recommended
for smooth operation of the tool.

A.2.4 Software dependencies

The artifact is based on Python, C, asm and bash. Detailed
requirements are provided in README (with the artifact).

A.2.5 Benchmarks

None

A.3 Set-up
A.3.1 Installation

The users are required to install:

• numpy and datetime (as part of
tool/requirements.txt)

• gcc (v11.4.0 or greater). This is a already part of
tool/setup.sh

• nasm (v2.15.05 or greater). This is already a part of
tool/setup.sh.

A.3.2 Basic Test

The tool and the PoCs need specific instructions to be avail-
able in the ISA supported by the processor. Run the setup.sh
to download the instructions list, required packages of Python
and check required flags in the processor.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): [Shesha tool] Shesha, with its particle swarm opti-
mization, is able to span expansive search spaces of over
500 instruction type and uncover previously undiscov-
ered avenues of bad speculation as detailed in Table 2 of
the paper. Shesha successfully mixes exploration (Sec-
tion 3.4.2 of the paper) and exploitation (Section 3.4.3
of the paper) to mutate particles in order to maximize
bad speculation. In about two hours, most of the specu-
lation events (claimed in the paper) should be visible on
affected CPUs.

https://github.com/SEAL-IIT-KGP/shesha/releases/tag/v2
https://github.com/SEAL-IIT-KGP/shesha/releases/tag/v2

(C2): [speculation_pocs] The events uncovered by the tool
in C1 (also detailed in Table 2 of the paper) demonstrate
speculative behaviour (i.e. allow execution of instruc-
tions which are otherwise not executed architecturally),
when tested across Intel 11-th and 12-th gen client-side
processors, and Intel 3-rd gen and 4-th gen server-side
processors. This is demonstrated by transiently executing
a string that is never supposed to be executed architec-
turally and then leaking it using Flush+Reload channel.

(C3): [fma_data_leak] As detailed by Section 8 of the paper,
the tool in C1 uncovers a novel data leak from the FMA
execution engine to the AVX execution engine. This
encompasses 60+ instructions belonging to both FMA
and IFMA extensions. Concretely, the memory operands
to FMA/IFMA instruction extensions buffer their data
in “Memory Access Units” with the FMA execution
unit, and such operands are “speculatively” forwarded to
faulted loads induced in the AVX execution engine. This
is demonstrated by leaking data from victim process
running FMA instructions, to the hyperthreaded attacker
process.

A.4.2 Experiments

(E1): [Shesha tool] [1 human-hour + 3 compute-hours +
5GB disk + 16GB RAM]:
How to: Run setup.sh to download the instructions
list and install the required packages. It also installs MSR
kernel module for reading HPCs.
Preparation: The script setup.sh will automatically
prepare the test platform. The user needs to check if the
CPU flags used in the next instructions are available in
their CPU. The terminal output of setup.sh shows all
the available flags in the CPU.
Execution: Run the command python3 shesha.py
-num-instructions 40 -avx -avx2 -sse
-ssse3 -sse2. The user can change the argument
-num-instructions to any non-zero positive integer
value. This argument controls the number of instructions
to start in that each particle manages.
Results: As Shesha starts exploring different instruc-
tion sequences for bad speculation events, the run.log
output file stores the instances when Shesha discovers
new transient events, along with the generation number.
Additonally, all such instruction sequences that gener-
ated transient leakages are stored in the asm directory.

(E2): [AVX-SSE transient leak] [0.25 human-hour + 0.25
compute-hour]:
How to: The codes can be found at
shesha/speculation_pocs/simd_vector direc-
tory. Note that this vulnerability is only present in Intel
12 and 13 gen client CPUs and 4th gen Xeon. Therefore,
the user needs to run the experiment on one of the
above-mentioned platforms to observe the leakage. The

codes for this experiment is optimized for 12th gen. In
case of other affected systems, the user can change the
perfmon address1 in msr.config.
Preparation: These experiments require huge
page tables enabled. This can be enabled using
the following command: echo 16 | sudo tee
/proc/sys/vm/nr_hugepages 1>/dev/null.
Execution: The Makefile inside the directory has two
targets: perfmon and leak. The perfmon target demon-
strates the relevant performance counters for the ASM
snippet contained within fuzz.S. Build the targets using
make all and then run using sudo ./fuzz. Likewise,
run sudo ./leak to observe the transient leakage.
Results: fuzz shows the number of AVX-SSE mix mi-
crocode assist and machine clear SMC events observed.
leak transiently executes a string “This is a test to verify
if it leaks”, which should not be processed architecturally.
Note: this leakage is speculative; that is, the string should
not be processed architecturally. Depending on the tran-
sient window generated, the frequency of the processor
at the time of test, activity in the co-located hyperthread,
and other factors, it may be possible that only a few
bytes of “This is a test to verify if it leaks” leak. There-
fore, even if a part of the string leaks, the speculative
behaviour is still established.
Paper cross-reference: This experiment captures re-
sults from Section 7.1 of the paper.

(E3): [precision missing transient leak] [0.25 human-hour +
0.25 compute-hour]:

How to: The codes can be found at
shesha/speculation_pocs/precision_mixing
directory. Note that this vulnerability is only present
in Intel 12 and 13 gen client CPUs and 4th gen Xeon.
Therefore, the user needs to run the experiment on
one of the above-mentioned platforms to observe the
leakage. The codes for this experiment is optimized for
12th gen.

Preparation: Same as E2.
Execution: Same as E2.
Results: Same as E2
(E4): [AES-SSE transient leak] [1 human-hour + 1 compute-

hour]:
How to: The codes can be found at

shesha/speculation_pocs/aes_simd directory.
Note that this vulnerability is present in Intel 11, 12 and
13 gen client CPUs and 3rd, 4th gen Xeon. Therefore,
the user needs to run the experiment on one of the
above-mentioned platforms to observe the leakage. The
codes for this experiment is optimized for 12th gen.

Preparation: Same as E2.
Execution: Same as E2.
Results: Same as E2.

1Can be found at https://perfmon-events.intel.com/

https://perfmon-events.intel.com/

(E5): [FMA data leak] [0.25 human-hour + 0.25 compute-
hour]:
How to: The codes can be found at
shesha/fma_data_leak/fma_source_leak_artifact
directory. To test this vulnerability, the processor must
have FMA instructions. The code for this experiment is
optimized for 11th gen Intel.
Preparation: Check whether the relevant flags are
present in the CPU, using the following command:
lscpu | tr ’ ’ ’\n’ | grep fma.
Configuration: 1⃝ CPU_VICTIM / CPU_ATTACKER :
set these to co-located hyperthreads. One can check the
CPU and CORE fields using lscpu -all -extended
and ensure that attacker and victim are running on same
physical core. 2⃝ AVX_512 : Set 1 if AVX_512 extension
is available on the machine. 3⃝ SILENT_MODE : Set 1 to
observe the leaked output on the terminal.
Execution: Run the following commands in order. 1⃝
make clean, 2⃝ make and then 3⃝ ./fma_leak 0 0 4.
Results: A sample output has been shown in the repo. A
successful leakage should show the victim data (in hex).
In the example shown in the artifact, is leaks victim data
0x25 from co-located thread on the same core. User can
change this data by changing the value of address_fma:
in asm.S.
Paper cross-reference: This experiment captures re-
sults from Section 8.2.2 of the paper.

(E6): [FMA data leak] [0.25 human-hour + 0.25 compute-
hour]:
How to: The codes can be found at
shesha/fma_data_leak/ams52_artifact direc-
tory. To test this vulnerability, the processor must have
FMA instructions. The code for this experiment is
optimized for 11th gen Intel.
Preparation: Same as E5.
Configuration: Same as E5
Execution: Same as E5.
Results: Same as E5.
Paper cross-reference: This experiment captures re-
sults from Section 8.3.1 of the paper.

A.5 Notes on Reusability

Particle Swarm Optimizer is a generic methodology suited
to monotonically increasing fitness functions. Evidently, the
events of bad speculation used (listed in Table 1 of the paper)
are monotonically increasing performance counters.

Hence, a natural extension is to consider other events in the
system (for example, Model Specific Registers) that log mono-
tonically increasing occurrences. Shesha, then, is capable of
generating ASM aiming to maximize such events. We note,
however, that Shesha can only generate ASMs that trigger
specific behaviour wrt. the events monitored. Whether such
events are exploitable or not is manual reverse-engineering

and investigation.
Another potential direction is to include x86 base instruc-

tions along with the ISEs that Shesha already supports. As
described in Section 3, Shesha is capable of efficient muta-
tions that maximize the fitness function in very expansive
search spaces. As such, the huge number of instructions that
come with the x86 ISA can be combined with ISEs to explore
other avenues of speculation (and potential exploits).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

