ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *24 Artifact Appendix: Divide and Surrender:
Exploiting Variable Division Instruction Timing in HQC Key Recovery
Attacks

Robin Leander Schroder

A Artifact Appendix

A.1 Abstract

The artifact contains the source-code necessary to run the
divide and surrender attack on HQC. The figures in the paper
can be reproduced using the data produced by the attack.

A.2 Description & Requirements

The attack includes both a simulated and a “real” mode, which
uses actual side-channel measurements as obtained by the
DIV-SMT side-channel. To perform the actual side-channel
attack an AMD Zen?2 processor (Ryzen 3000) is required. If
a Zen?2 processor is not available, we provide the required
data to reproduce the figure in data/smt.csv. All scripts
and code is written for Linux and is not portable to other
platforms.

A.2.1 Security, privacy, and ethical concerns

We see little risks involved in running the attack. The per-
formance of the system may be impacted, as all cores are
used. The collect_division_thoughput_data.sh script
disables SMT and then restores the previous state.

A.2.2 How to access

https://github.com/hgc-attack/
divide-and-surrender/tree/
2d2d66c99736674e964cf162c40e226€90637£71

A.2.3 Hardware dependencies

An AMD Zen2 CPU is required to perform an actual DIV-
SMT side-channel attack. The simulated modes have no spe-
cial hardware requirements.

A.2.4 Software dependencies

Linux & docker/podman
When docker/podman is not used please review the Dock-
erfile for detailed information on dependencies.

Stefan Gast Qian Guo

A.2.5 Benchmarks

No data-sets or similar are required. We provide the output
of the attack runs in the data directory. These can be used
to reproduce the figures, but can also be regenerated from
scratch.

A.3 Set-up

Install docker or podman (podman may require additional
configuration).

A.3.1 Installation

docker build -t das .

Note that building will take a while (20 minutes on a
300Mbit/s connection). The final image is roughly 10GB.
A.3.2 Basic Test
Run the docker image:

docker run -it --rm \
-v "$ (realpath data)":/app/data \
-v "$ (realpath figures)":/app/figures \
das

Then test if the existing data can be plotted:
python visualize/plot.py
The script should produce the following figures:
* Figure 9: figures/n_traces.pdf
e Figure 10: figures/timing_histogram.pdf
* Figure 11: figures/difference_of_means.pdf
e Figure 12: figures/oracle_calls.pdf

These figures should closely match the ones in the paper
and will later be used to verify our claims. Mainly Figure 12
is relevant for claim C1. Once figure generation completes
successfully you can clear the data directory:

rm data/*


https://github.com/hqc-attack/divide-and-surrender/tree/2d2d66c99736674e964cf162c40e226e90637f71
https://github.com/hqc-attack/divide-and-surrender/tree/2d2d66c99736674e964cf162c40e226e90637f71
https://github.com/hqc-attack/divide-and-surrender/tree/2d2d66c99736674e964cf162c40e226e90637f71

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our HQC attack method requires significantly fewer
oracle calls than previous methods. This is proven by
Experiment El.

(C2): The DIV-SMT side-channel allows key-recovery in
HQC with high success probability. This is proven by
Experiment E2.

A.4.2 Experiments

(E1): [HQC Attack Simulation Results] [15 human-minutes
+ 24 core-minutes + <1MB disk]: Simulates the attack
for various oracle accuracies. For each oracle accuracy
it records each attack run’s metrics in a CSV in ‘data/‘.
We simulated 1000 attacks per oracle accuracy, but this
will take longer and is not strictly necessary to validate
claim CI.

Preparation: Inside the das docker container (see
A3.1).
Execution: Run the following two commands:

enough (AMD Ryzen 7 3700X) the attacks should either
stall and repeatedly log “Exhausted all 30000 measure-
ment slots.” or the attacks will terminate but fail.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

OPTS="--num-attacks=100" ./collect_simulation_data.sh

python visualize/plot.py

Results: Figure 12 is produced and saved in
figures/oracle_calls.pdf. The number of or-
acle calls should (roughly) match the reported numbers
in the paper for each oracle accuracy. Note that the
0.515 oracle accuracy is removed from the script, as it
will take up the vast majority of the computation time,
and isn’t necessary to validate the major claim C1.
(E2): [DIV-SMT powered side-channel attack] [15 human-
minutes + 32 core-minutes + <1MB disk]: Run the attack
using the SMT oracle. This requires an AMD Zen2 pro-
cessor, possibly even an exact match (AMD Ryzen 7
3700X) as we did not pursue portability of the DIV-SMT
oracle in our implementation.
Preparation: Inside the das docker container (see
A3.1).
Execution: We performed 1000 attacks, but this will
take hours and is also not strictly necessary to validate
claim C2.

RUST_LOG=debug cargo run --release —-- \
attack --smt --num-attacks=8 \
--stats-file=data/smt.csv

To evaluate the results run:
julia --project=. attack_stats.jl

Results: The results printed by the attack_stats.jl
script should roughly match the numbers reported in Sec-
tion 5.2 “Real-World Attacks in an AMD Zen?2 Platform”
in the paper.

If the attack is not run on an AMD Zen2 processor or the
processor does not match our targeted processor closely


https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


