
USENIX Security ’24 Artifact Appendix: SnailLoad: Exploiting Remote
Network Latency Measurements without JavaScript

Stefan Gast, Roland Czerny, Jonas Juffinger, Fabian Rauscher, Simone Franza, Daniel Gruss
Graz University of Technology

A Artifact Appendix

A.1 Abstract

We present SnailLoad, a new side-channel attack where the
victim loads an asset, e.g., a file or an image, from an attacker-
controlled server, exploiting the victim’s network latency as a
side channel tied to activities on the victim system, e.g., watch-
ing videos or websites. SnailLoad requires no JavaScript, no
form of code execution on the victim system, and no user
interaction but only a constant exchange of network packets,
e.g., a network connection in the background. SnailLoad mea-
sures the latency to the victim system and infers the network
activity on the victim system from the TCP acknowledgment
latency variations.

The artifact demonstrates the timing side-channel and
shows how streaming YouTube videos or opening various
websites causes characteristic patterns in the TCP acknowl-
edgment latencies. We showcase an HTTP web server offering
latency traces in a BMP file, generated on the fly while that
BMP file is being downloaded.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our artifact does not perform any destructive steps. It creates
network latency traces correlating to activity on the internet
connection, possibly also including activity of other users
sharing the same connection or the same last mile bottleneck.
While the traces do not directly contain sensitive informa-
tion, privacy critical information can be derived from them,
as described in the fingerprinting attacks in the paper. We
therefore recommend to evaluate the artifact on an otherwise
idle internet connection, with an exclusive last mile, like a
FTTH connection.

A.2.2 How to access

The source code of the artifact is available at
https://github.com/IAIK/SnailLoad, with the
evaluated version of the artifact being available un-
der https://github.com/IAIK/SnailLoad/tree/
93612789e8a69d1340a4bf426fe3c42a6ebafb06. We also

run the artifact at http://demo.snailload.com, using
the source code provided at https://github.com/IAIK/
SnailLoad.

A.2.3 Hardware dependencies

The artifact server can be accessed from any notebook or
desktop computer on a home internet connection. The internet
connection should be idle, with other devices being discon-
nected or disabled. For best results, evaluate on an ADSL or
a slower (below 100 Mbit/s) FTTH connection.

Optionally, to run the artifact on an own server, a remote
native or virtual server is required. The server must have
reasonably stable ping times and must be reachable on a
chosen TCP port from the client without a reverse proxy.
We tested our server code on multiple hosters and on our
university infrastructure.

A.2.4 Software dependencies

The client accessing the artifact server must have a graphical
web browser installed. We tested Mozilla Firefox and Google
Chrome.

To run the artifact on an own server, the artifact has to be
compiled from source. For this, gcc, make and libc-dev are
required on the machine used to set up the remote server. On
the server, a Linux installation with SSH access and the ability
to execute native code is required.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

The following steps are only required for setting up the artifact
on an own server.

1. Download the source code from https://github.com/
IAIK/SnailLoad.

2. Change into the SnailLoad/demo_server directory:
cd SnailLoad/demo_server.

3. Compile the server binary: make

https://github.com/IAIK/SnailLoad
https://github.com/IAIK/SnailLoad/tree/93612789e8a69d1340a4bf426fe3c42a6ebafb06
https://github.com/IAIK/SnailLoad/tree/93612789e8a69d1340a4bf426fe3c42a6ebafb06
http://demo.snailload.com
https://github.com/IAIK/SnailLoad
https://github.com/IAIK/SnailLoad
https://github.com/IAIK/SnailLoad
https://github.com/IAIK/SnailLoad

4. Copy the demo_server binary to the server.
5. Log in to the server via SSH.
6. If the server binary should use a TCP port be-

low 1024, adjust the capabilities: sudo setcap
cap_net_bind_service+ep demo_server

7. Start the server binary on the designated TCP port:
./demo_server -p $PORT, with $PORT being the port
number.

A.3.2 Basic Test

1. Access the server in your browser, e.g., http://
demo.snailload.com/plot.bmp or http://1.2.3.
4:8080/plot.bmp.

2. A BMP image should load slowly, showing a vertical live
trace of the current network latency. With an otherwise
idle internet connection, the trace should be rather flat,
with only occasional peaks.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): A malicious TCP server can observe network activity
on user’s internet connection.

(C2): Streaming YouTube videos causes distinct latency pat-
terns.

(C3): Opening websites causes distinct latency patterns.

A.4.2 Experiments

(E1): Basic activity detection [3 human-minutes]:
How to: Reload the BMP file in the browser. While
the file is loading, open https://fast.com in another
browser window.
Results: While https://fast.com is performing the
speed test, latencies increase significantly in the trace.

(E2): Observing YouTube buffering [5 human-minutes]:
How to: Reload the BMP file in the browser. While
the file is loading, open https://www.youtube.com/
watch?v=1WEAJ-DFkHE&hd=1 in another browser win-
dow. Start the video and ensure it is playing with at least
Full HD resolution.
Results: Latencies increase significantly whenever the
video is buffering, i.e., the gray progress bar in the
YouTube player advances. Over time, this results in a
characteristic pattern of low and high latencies in the
trace.

(E3): Distinguishing websites [10 human-minutes]:
How to: Reload the BMP file in the browser. While the
file is loading, open https://amazon.com in another
browser window. After Amazon has loaded, open https:
//google.com. Repeat if desired.

Results: Loading Amazon leads to an extended period
with higher latencies, whereas loading Google only re-
sults in minor latency spikes.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

http://demo.snailload.com/plot.bmp
http://demo.snailload.com/plot.bmp
http://1.2.3.4:8080/plot.bmp
http://1.2.3.4:8080/plot.bmp
https://fast.com
https://fast.com
https://www.youtube.com/watch?v=1WEAJ-DFkHE&hd=1
https://www.youtube.com/watch?v=1WEAJ-DFkHE&hd=1
https://amazon.com
https://google.com
https://google.com
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

