
USENIX Security ’24 Artifact Appendix: EL3XIR: Fuzzing COTS Secure
Monitors

Christian Lindenmeier
FAU Erlangen-Nürnberg

Mathias Payer
EPFL

Marcel Busch
EPFL

A Artifact Appendix

A.1 Abstract

EL3XIR introduces a framework to effectively rehost and fuzz
the secure monitor firmware layer of proprietary TrustZone-
based TEEs. While other approaches have focused on naively
rehosting or fuzzing Trusted Applications (EL0) or the TEE
OS (EL1), EL3XIR targets the highly-privileged but unex-
plored secure monitor (EL3) and its unique challenges.

In our artifact evaluation, we demonstrate that state-of-
the-art fuzzing approaches are insufficient to effectively fuzz
COTS secure monitors. We give instructions on reproducing
the results for EL3XIR’s main technical contributions: (1)
rehosting of secure monitor binaries, (2) interface recovery
from REE OS, and (3) effectiveness of reflected peripheral
modeling. We provide our evaluation set and instructions
for executing fuzzing campaigns with EL3XIR. Additionally,
we share details about assigned CVEs to support EL3XIR’s
capability to find unknown bugs.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our experiments are conducted within Docker containers and
will not harm the host.

A.2.2 How to access

EL3XIR’s source code can be found on Github
at https://github.com/HexHive/EL3XIR/tree/
ae-sec24-accepted. Since our evaluation set in-
cludes proprietary binaries, we provide all necessary
evaluation data at Zenodo in an encrypted archive
el3xir-ae-part1-usenix24.tar.gz.enc. We communi-
cated the access key only with evaluators. Additionally, we
provide the download link in EL3XIR’s Github repository.
The README in the archive gives an overview of all shared
data. We note that for reproducing our results you have to
collect your own artifacts (binaries, kernel source code).

A.2.3 Hardware dependencies

We conducted our experiments on a 16-core Intel Xeon Gold
5218 processor (hyperthreading disabled) with 64 GB of
RAM. However, we expect that our results can be reproduced
on machines with similar performance. Since we run the
fuzzing campaigns (Section 6.3) limited to one CPU for each
target eight times for 24 hours, we recommend using a pro-
cessor with at least 8 cores. Additionally, we recommend at
least 150 GB of free storage.

A.2.4 Software dependencies

We tested EL3XIR on Ubuntu 22.04. We require Git (tested
version 2.34.1) to download the source code and reposito-
ries and Docker (tested version 26.1.3, build b72abbb)
with the compose plugin (tested version v2.27.1) to build
EL3XIR. Additionally, we need Python (tested version
3.10.12 that comes with Ubuntu 22.04).

A.2.5 Benchmarks

EL3XIR requires at least the binary file of a targeted se-
cure monitor for reproducing the fuzzing results without in-
terface awareness (i f ace−/mmio−and i f ace−/mmio+). For harness
synthesis and reproducing the interface-aware fuzzing cam-
paigns (i f ace+/mmio−and i f ace+/mmio+), we require the source
code of the deployed Linux kernel or the correspond-
ing compiled LLVM-Bitcode files. Since our evaluation
set includes proprietary binaries, we provide all neces-
sary evaluation data at Zenodo in encrypted archives
el3xir-ae-part1-usenix24.tar.gz.enc. We communi-
cate the access key and instructions via HotCrp (see Artifact
access) and links via EL3XIR’s Github repository. Most im-
portantly, the archive includes:

• Secure monitor binary: We compiled the open-source bi-
naries from official sources and extracted the proprietary
ones from firmware updates.

• Source code of REE OS kernel: For the open-source
targets, we downloaded the Linux kernels from official
sources. Considering the kernels deployed on COTS

https://github.com/HexHive/EL3XIR/tree/ae-sec24-accepted
https://github.com/HexHive/EL3XIR/tree/ae-sec24-accepted

Android smartphones, we directly provide the compiled
LLVM-Bitcode files.

A.3 Set-up
A.3.1 Installation

We provide more details in the README.md file of
EL3XIR’s github repository. For installation with
docker clone the repository (git clone --recursive
https://github.com/HexHive/EL3XIR.git) and
build the containers with ‘make build‘. In case
you cannot build the images, we also provide pre-
built docker images on Docker hub at https://hub.
docker.com/r/chlindenmeier/el3xir_synthesis and
https://hub.docker.com/r/chlindenmeier/el3xir.

To include our evaluation set, download the archives
el3xir-ae-part1-usenix24.tar.gz.enc, decrypt it (see
HotCrp), and move the content of the archives into
EL3XIR’s in/ directory that will be mounted inside
the docker containers. Each archive part includes ar-
tifacts for one target. We recommend to work with
el3xir-ae-part1-usenix24.tar.gz.enc.

A.3.2 Basic Test

When the docker build process finished successfully, you
can run ‘make run-fuzz-sh‘ to spawn a shell in the
container. For further testing, you can run a simple
test fuzzing campaign (‘i f ace−/mmio−‘). To this end, check
that the targeted secure monitor binary can be found at
/in/$TARGET/vendor-soc-bl31.bin. We recommend to
use our default target TARGET=intel-n5x. Then execute
make run-fuzz-test TARGET=$TARGET. The test is suc-
cessful, when EL3XIR boots the target, takes a snapshot,
starts AFL++, and you can see AFL++’s dashboard.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The manual steps of EL3XIR’s partial-rehosting ap-
proach are feasible (Section 6.1).

(C2): EL3XIR can perform automated interface recovery of
function signatures for runtime services and synthesize
effective fuzzing harnesses (Section 6.2 and Table 2).

(C3): EL3XIR outperforms state-of-the-art methods for
fuzzing TEE firmware in edge coverage (Section 6.3,
Figure 6, and Table 4).

(C4): EL3XIR can emulate MMIO accesses during fuzzing
using reflected peripheral modeling to overcome cover-
age walls (Section 6.3 and Table 3).

(C5): EL3XIR can uncover previously unknown bugs in se-
cure monitor implementations (Section 6.4 and Table
5).

A.4.2 Experiments

We design four experiments (E1-E4) to confirm
C1-C4. For C5 we provide an overview of CVE
references as part of the downloaded archives
el3xir-ae-part1-usenix24.tar.gz.enc. Read the
README file in the archives for more information.

EL3XIR’s experiments can mostly be reproduced with au-
tomated make targets. Look into EL3XIR’s README file for
more information. Note that estimate times provided assume
the execution of the experiment for one target. We recommend
to use our default target TARGET=intel-n5x. Furthermore,
we note that since fuzzing is a non-deterministic process,
some results may slightly differ from the exact numbers stated
in our paper.
(E1): [Rehosting Feasibility] [1 human-hour + 5 compute-

minutes]:
How to: EL3XIR’s rehosting framework
can be found at src/rehosting-framework.
Each secure monitor requires the implemen-
tation of a rehosting environment (folder
secmonRehosting/rehostingEnvironments/).
We manually inspect the complexity of a rehosting
environment and boot the secure monitor binary to
confirm C1.
Preparation: Open files factories.py and
$TARGET_boot_patcher.py. You may inspect these
files for multiple targets to confirm the systematical
structure and similarity.
Execution: Manually inspect factories.py to find
implementations of functions for software stubs (Sec-
tion 6.1) including minimal bootloader, secure world
stub, and normal world stub. Additionally, inspect
$TARGET_boot_patcher.py to identify breakpoints
and MMIO emulation to handle hardware dependen-
cies. Run make run-fuzz-test TARGET=$TARGET to
boot a targeted secure monitor binary. You may exit the
docker container when AFL++’s dashboard comes up,
since a snapshot has been taken.
Results: The objective is to boot the secure mon-
itor until exit to normal world is reached, which
is our attack surface for our fuzzer. Confirm that
out/$TARGET/snapshot.qcow2 is present. Inspect
out/$TARGET/qemu_err.txt which holds the com-
plete qemu logging for the boot process. Validate that
the last instruction executed (end of file) was a smc, and
that an exception return from EL3 to EL1 NS happened.

(E2): [Interface Recovery] [1 human-hour + 30 compute-
minutes]:
How to: EL3XIR’s interface recovery is mostly auto-
mated. We automatically synthesize an interface-aware
fuzzing harness for an open-source target (Table 1) and
reason about the results manually to validate C2.
Preparation: Manually create and fill file

https://hub.docker.com/r/chlindenmeier/el3xir_synthesis
https://hub.docker.com/r/chlindenmeier/el3xir_synthesis
https://hub.docker.com/r/chlindenmeier/el3xir

in/$TARGET/llvm-link.lst with promising REE
OS kernel object files that may exercise the targeted
secure monitor’s interface. You may also open our
provided files, retrace our manual process, and validate
the complexity.
Execution: Execute make run-synth-eval
TARGET=$TARGET that will run the entire harness
synthesis pipeline. This includes (1) compilation and
linkage of the manually picked REE OS partition, (2)
static analysis and interface recovery, and (3) probing of
the SMC interface of the targeted secure monitor. You
may ignore warnings during kernel compilation.
Results: Find the synthesized harness at
in/$TARGET/harnessdata.csv. Each recovered
interface is structured as described in Appendix B in our
paper. To validate the correctness of interface prototypes
(Table 2), compare the auto-generated harnessdata with
our provided annotated harnessdata ground-truth file
(harnessdata_annotated.csv). Furthermore, look
into /out/$TARGET/synth-summary-$TARGET.txt
to find a summarized report and compare it to Table 2.

(E3): [Fuzzing] [10 human-minutes + 24 compute-hours]:
How to: We conduct two fuzzing campaigns for one tar-
get using EL3XIR’s baseline configuration (i f ace−/mmio−)
representing the state-of-the-art and EL3XIR’s full con-
figuration (i f ace+/mmio+). We compare the resulting edge
coverage to reason about C3.
Preparation: Ensure that secure monitor binary and
harnessdata.csv are in in/$TARGET.
Execution: Execute make run-fuzz-comp-eval
TARGET=$TARGET to start both fuzzing runs for
(i f ace−/mmio−) and (i f ace+/mmio+). EL3XIR will automati-
cally detect the number of CPU cores and assign half
to each campaign while leaving leaving two free. If
necessary you may set NCORES to a fixed number in
the Makefile manually. The fuzzing campaigns will
run 24 hours, but you may also halt them earlier using
make halt (shortly wait until containers shut down) if
necessary (e.g., after 5 hours). When finished run make
run-cov-comp-eval TARGET=$TARGET to rerun all
found test cases. You can plot an edge coverage graph
for easy comparison using make run-cov-comp-plot
TARGET=$TARGET. Warning and error message may be
ignored if out/$TARGET/plot.pdf is generated.
Results: Inspect out/$TARGET/plot.pdf to see that
EL3XIR’s full configuration achieves higher edge cover-
age and results are similar to Figure 6 and Table 4 of our
paper.

(E4): [Reflected Peripheral Modeling] [10 human-minutes +
5 compute-minutes]:
How to: We collect data about EL3XIR’s reflect periph-
eral modeling by rerunning test cases with improved
MMIO logging. The results confirm C4.
Preparation: We rerun test cases found during E3.

Alternatively you may start a fresh fuzzing cam-
paign with make run-fuzz-eval TARGET=$TARGET
HARNESS=$HARNESS MMIO_FUZZ=mmio.
Execution: Execute make run-mmio-comp-eval
TARGET=$TARGET to rerun all test cases found dur-
ing E3’s fuzzing campaign with EL3XIR’s full
configuration (i f ace+/mmio+). If you started a fresh cam-
paign, run make run-mmio-eval TARGET=$TARGET
HARNESS=$HARNESS MMIO_FUZZ=mmio.
Results: Find a summary in file
mmio-summary-$TARGET-$HARNESS-mmio.txt
and compare the numbers to Table 3 of our paper to
confirm that they look similar.

A.5 Notes on Reusability
EL3XIR is designed to be extended with other secure monitor
binaries. For this purpose, collect necessary artifacts and place
them in a new folder in in/. If trying to fuzz a new secure
monitor with EL3XIR the following steps are required:

1. Implement rehosting environment: This includes a boot-
loader stub, secure world stub, normal world stup, and
handling of hardware interactions. You may look into
../secmonRehosting/rehostingEnvironments/ to
find examples. Section 4.1 of our paper explains a high-
level systematic process for rehosting secure monitor
binaries.

2. Optional harness synthesis: If you want to use EL3XIR’s
full potential you need the associated REE OS source
code files (or already compiled as LLVM-Bitcode). Then
write a file llvm-link.lst that defines all kernel object
files that may be interesting for exercising the secure
monitor’s interface. Section 5.3 of our paper provides
more details. Finally, run make run-synth-eval to au-
tomatically synthesize the harness.

3. Fuzzing: When you successfully rehosted the
new secure monitor binary you may already
fuzz it with EL3XIR without interface awareness
but optionally with reflected peripheral mod-
eling (make run-fuzz-test TARGET=$TARGET
HARNESS=noiface MMIO_FUZZ=$MMIO_FUZZ). When
harness synthesis is complete, you can also activate
interface awareness.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

