
USENIX Security ’24 Artifact Appendix: Spill the TeA: An Empirical
Study of Trusted Application Rollback Prevention on Android

Smartphones

Marcel Busch Philipp Mao Mathias Payer
EPFL, Lausanne, Switzerland

A Artifact Appendix

A.1 Abstract
The number and complexity of Trusted Applications (TAs,
applications running in Trusted Execution Environments —
TEEs) deployed on mobile devices has exploded. A vulnera-
bility in a single TA impacts the security of the entire device.
Thus, vendors must rapidly fix such vulnerabilities and revoke
vulnerable versions to prevent rollback attacks, i.e., loading an
old version of the TA to exploit a known vulnerability. In this
paper, we assess the state of TA rollback prevention by con-
ducting a large-scale cross-vendor study. First, we establish
the largest TA dataset in existence, encompassing 35,541 TAs
obtained from 1,330 firmware images deployed on mobile
devices across the top five most common vendors. Second,
we identify 37 TA vulnerabilities that we leverage to assess
the state of industry-wide TA rollback effectiveness. Third,
we make the counterintuitive discovery that the uncoordi-
nated usage of rollback prevention correlates with the leakage
of security-critical information and has far-reaching conse-
quences potentially negatively impacting the whole mobile
ecosystem. Fourth, we demonstrate the severity of ineffective
TA rollback prevention by exploiting two different TEEs on
fully-updated mobile devices. In summary, our results indi-
cate severe deficiencies in TA rollback prevention across the
mobile ecosystem.

Our artifact aims to show that our study on TA rollback
prevention can be reproduced.

A.2 Description & Requirements
We obtained our dataset from multiple terabytes of Android
firmware images. This artifact appendix demonstrates where
to obtain these images from and provides the extraction tools
to obtain the information relevant for our dataset. Further, we
provide evidence for the major claims in our paper.

A.2.1 Security, privacy, and ethical concerns

We do not expect any security, privacy, or ethical concerns
from executing our code.

A.2.2 How to access

Visit https://github.com/HexHive/spill_the_tea/
tree/sec-ae.

A.2.3 Hardware dependencies

No special hardware requirements needed.

A.2.4 Software dependencies

We performed all of our processing on a Ubuntu 22.04 ma-
chine and require Python 3.10 plus the dependencies refer-
ences in our GitHub repository. The proprietary firmware
images that our dataset is based on can be obtained from the
various sources described in the paper.

A.2.5 Benchmarks

Our dataset is extracted from mutliple terabytes of Android
firmware images that we obtained from various online sources.
This artifact appendix demonstrates how to use our extraction
tools to recreate or extend our dataset.

Our artifact contains the names of the firmware images
(data/firmware.txt) we used. Based on these names, it
should be possible to obtain the corresponding firmware im-
age from the internet and reproduce our extraction pipeline.

A.3 Set-up

A.3.1 Installation

Follow the installation steps in the README.md of our GitHub
repository.

A.3.2 Basic Test

Run the Trusted Application extraction on the firmware image
as described in the README.md.

https://github.com/HexHive/spill_the_tea/tree/sec-ae
https://github.com/HexHive/spill_the_tea/tree/sec-ae


A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Created functional tooling to create the TA dataset.
(C2): Identified vulnerable and rollbackable TAs (Table 1

shows this data in aggregated form and Figure 9 on a per
device model level over time).

(C3): Captured state of ecosystem TA rollback.
(C4): Uncoordinated TA rollback increases have negative

side effects for the TA ecosystem.

A.4.2 Experiments

(E1): [TA Extraction and Parsing] [30 human-minutes + 15
compute-minutes (depending on bandwidth) + 15GB
disk]:
This experiment shows how to extract TAs from
firmware images. Our artifacts document the vendors,
models, and firmware versions used for our study. Since
our dataset spans multipe terabytes of firmware images,
we demonstrate the reproduction of our firmware extrac-
tion based on two representative examples and provide
the result of the extraction for the whole dataset.
The ODM, TEE, Vendor combination in Table 1
are documented in data/config.py. The individ-
ual firmware images of our study are documented in
data/firmware.txt.
For instance, data/config.py reveals that Xiaomi
has a phone model with code name dandelion
(sold under the name “Xiaomi Redmi 9A” ac-
cording to gsmarena.com1) and that this model
is using the MediaTek/BeanPod TEE. Fur-
ther, all /fw/xiaomi/dandelion/* entries in
data/firmware.txt list the firmware images for
this model that we used in our study.
Additionally, data/config.py contains the Samsung
Galaxy S10 (SM-G973F2) which is running the TEE-
Gris TEE. The /fw/samsung/SM-G973F/* entries in
data/firmware.txt list the firmware images for this
model.
Preparation: Follow the SETUP steps in our
README.md.
Execution: Follow the steps in Example 1 and
Example 2 in our README.md.
Results: The experiment is successful if the TAs are
extracted successfully for the dandelion image and the
SM-G973F image. Additionally, the report.json for
the SM-G973F should contain the metadata for the TAs
contained in this image. This result demonstrates our
tooling to automatically process firmware images (C1).

(E2): [Reproducing TA Rollback Analysis] [5 human-
minutes + 5 compute-minutes]:

1https://www.gsmarena.com/xiaomi_redmi_9a-10279.php
2https://www.gsmarena.com/samsung_galaxy_s10-9536.php

In E1, we demonstrated how to use our tooling to au-
tomatically extract and parse TAs from proprietary An-
droid firmware images. In this experiment, we aim to
reproduce the TA Rollback Analysis captured in Table 1
and Figure 9 in our paper.
Table 9 (Appendix) contains the vulnerable TAs we
used in our study. We use this data in machine-
readable form, see data/samsung_vuln_db.py and
data/xiaomi_vuln_db.py.
Preparation: The fw/ directory in our repository con-
tains the metadata for all TAs in our dataset organized
by OEM, device, region, and firmware version.
To focus on a single device and a single region, we
prepare the Samsung SM-G973F for the VD2 region
as follows. mkdir -p fw2/samsung/SM-G973F/,
cp -r fw/samsung/SM-G973F/VD2
fw2/samsung/SM-G973F/, and change the base
directory for the dataset in data/config.py to
fw_path = "./fw2".
Execution: Run the script
paper_scripts/gen_number_better.py and
compare the teegris entries for samsung in the
generated numbers.json with Figure 9i, for instance
cat numbers.json | python -m json.tool.
Results: The output should indicate one neutralized
rollback attack ("nr_TAs_neutralized": 1) due to
an increased rollback counter (blue triangle for SKPM
in Figure 9i), 12 vulnerabilities ("nr_public_vulns":
12) indicated by orange X marks, and 9 TAs that
are rollbackable ("nr_TAs_rollbackable": 9) in
the latest firmware image (all TAs in Figure 9i
that end with an orange circle). Note that Figure
9i does not show all TAs for this device due to
space constraints, and the 9th rollbackable TA is the
00000000-0000-0000-0000-000000000046 found on
this device.
With this experiment, we show that our tooling can iden-
tify vulnerable and rollabckable TAs (C2).
Further, paper_scripts/numbers.json contains the
aggregated raw data of this experiment based on all the
firmware images listed in data/firmware.txt
(Table 1). Changing data/config.py
back to fw_path = "./fw" and running
paper_scripts/gen_number_better.py allows to
recreate the results in paper_scripts/numbers.json.
Given the full dataset, our analysis reveals that 29 out of
51 fully-updated devices are vulnerable to at least one
vulnerable TA that can be rolled back. We capture the
state of TA rollback attacks with these numbers (C3).

(E3): [Negative Side Effects] [5 human-minutes + 5 compute-
minutes]: This experiment aims to show instances of
cross-OEM leakage and, thus, provides evidence for neg-
ative side effects of uncoordinated TA rollback counter
usage.

https://www.gsmarena.com/xiaomi_redmi_9a-10279.php
https://www.gsmarena.com/samsung_galaxy_s10-9536.php


As can be seen in Figure 9i and j, the WVDRM TA on
the Samsung S10 (SM-G973F) and Samsung A10 (SM-
A105F) have received uncoordinated rollback counter
increases. In this experiment, we show that the Samsung
S10 is negatively impacted by this leakage.
Preparation: In this experiment, we focus
on the first (G973FXXS3ASJG) and the lat-
est (G973FXXUGHVK1) firmware images for
the Samsung S10 (SM-G973F, region: VD2)
in fw/samsung/SM-G973F/VD2/, and the first
(A105FDDS3ATC1) and last (A105FDDU8CVH4)
images for the Samsung A10 (SM-A105F, region: XFA)
in fw/samsung/SM-A105F/XFA/.
Execution: Find the information for the
WVDRM TA in all four firmware images. For in-
stance, for the G973FXXS3ASJG image cat
report.json | python -m json.tool in
fw/samsung/SM-G973F/VD2/G973FXXS3ASJG/
which should format and print the report. We are looking
for the entry where "human_name": "WVDRM".
Results: The WVDRM TA of the SM-A105F changes its
header format from SEC2 to SEC3, enabling and setting
the TA rollback counter for this TA after a sequence of
vulnerabilities (see Figure 9j). In contrast, the WVDRM
for the SM-G973F does not receive a rollback counter
increase during the entire lifetime of this TA. Conse-
quently, the rollback counter usage of the SM-A105F
WVDRM leaks information about the availability of vulner-
able WVDRM versions on the SM-G973F (C4).

A.5 Notes on Reusability
Our Android firmware extraction tooling can be used and
extended to automate tasks related to the processing of pro-
prietary firmware images.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


