
USENIX Security ’24 Artifact Appendix
BUDAlloc: Defeating Use-After-Free Bugs by Decoupling Virtual

Address

Junho Ahn, Jaehyeon Lee, Kanghyuk Lee, Wooseok Gwak, Minseong Hwang, Youngjin Kwon
School of Computing, KAIST

A Artifact Appendix

This paper introduces BUDAlloc, a one-time-allocator for
detecting and protecting use-after-free bugs in unmodified bi-
naries. The core idea is co-designing a user-level allocator and
kernel by separating virtual and physical address management.
The user-level allocator manages virtual address layout, elim-
inating the need for system calls when creating virtual aliases.
This is essential for reducing internal fragmentation caused by
the one-time-allocator. BUDAlloc customizes the kernel page
fault handler with eBPF for batching unmap requests when
freeing objects. In SPEC CPU 2017, BUDAlloc achieves a
15% performance improvement over DangZero and reduces
memory overhead by 61% compared to FFmalloc.

A.1 Abstract
This artifact evaluation provides the source code, runtime
setup, and instructions needed to reproduce the BUDAlloc
evaluation results. We evaluate BUDAlloc in terms of security,
performance, and memory usage. For the security evaluation,
we conduct CVE analysis, use the NIST Juliet test suite, and
HardsHeap. For performance evaluation, we test BUDAlloc
with SPEC CPU 2006 & 2017, PASEC 3.0, Apache, and
Nginx Webserver. This artifact demonstrates that BUDAlloc
effectively prevents and detects use-after-free (UAF) bugs
while having minimal impact on performance and memory
usage.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no ethical concerns associated with BUDAlloc. The
source code is released under the MIT license.

A.2.2 How to access

This artifact evaluation can be accessed
via the following stable URL: https://
github.com/casys-kaist/BUDAlloc/tree/
9adddb369c2e74e86431459c627417f2f57cadbb.

A.2.3 Hardware dependencies

We tested BUDAlloc with Intel(R) Xeon(R) Gold 5220R CPU
at 2.2GHz with 24 cores, 172GB DRAM - 2666 MHZ, 512
GB SSD, and 10-Gigabit Network Connection. In all the ex-
periments, we disable hyper-threading, CPU power-saving
states, and frequency scaling to reduce the variance. We use
Non-Uniform Memory Access (NUMA) in the PARSEC 3.0
benchmarks to fully utilize all 48 cores in the motherboard.
We use time to get the resident set size (RSS) and total execu-
tion time except DangZero.

A.2.4 Software dependencies

To support atomic operations in the BPF program, BUDAlloc
requires the installation of clang-17. This can be done using
the ‘scripts/setup.sh‘ script. Our setup utilizes Ubuntu 20.04
with GCC version 9.4.0. If using a newer version of GCC, the
-fcommon and -Wno-implicit-function-declaration
compiler options are necessary. We use default configurations
for other memory allocators in all evaluations. For testing on
DangZero, we use a virtual machine with KVM, as this is the
default method for running Kernel-Mode-Linux in DangZero.

A.2.5 Benchmarks

We used SPECCPU 2006, SPECCPU 2017, PARSEC 3.0,
Apache2, Nginx to benchmark the performance of BUDAlloc.
To evaluate the robustness of BUDAlloc compared to other
OTA systems, we evaluate a set of Common Vulnerabilities
and Exposures (CVEs), HardsHeap Fuzzer, and NIST Juliet
Test Suite.

A.3 Set-up

BUDAlloc consists of two distinct components: the kernel and
the user space. The BUDAlloc kernel includes the necessary
kernel patches for the eBPF helper functions and custom
page fault handler. The BUDAlloc user space contains both
the user-level components and the eBPF custom page fault
handler.

https://github.com/casys-kaist/BUDAlloc/tree/9adddb369c2e74e86431459c627417f2f57cadbb
https://github.com/casys-kaist/BUDAlloc/tree/9adddb369c2e74e86431459c627417f2f57cadbb
https://github.com/casys-kaist/BUDAlloc/tree/9adddb369c2e74e86431459c627417f2f57cadbb

A.3.1 Installation

You can find more information in our github repository.

BUDAlloc-Kernel Installation.

1. Clone the BUDAlloc repository

git clone
https://github.com/casys-kaist/BUDAlloc↪→

2. Get submodules and update. This will clone BUDAlloc-
Kernel repository.

$ cd BUDAlloc
$ git submodule init
$ git submodule update

3. Build and install the kernel. In the kernel config-
urations, CONFIG_BPF_SBPF should be enabled, and
CONFIG_BPF_SBPF_MEM_DEBUG should be turned off to
measure accurate performance.

$ cd BUDAlloc-Kernel
$ make -j$(nproc)
$ sudo make -j$(nproc) INSTALL_MOD_STRIP=1

modules_install↪→

$ sudo make install

4. Reboot your system.

5. After rebooting, install the libbpf library.

(a) Navigate to the libbpf directory and build the
library.

$ cd BUDAlloc-Kernel/tools/lib/bpf
$ make -j$(nproc)
$ sudo make install

(b) Install the kernel header files.

$ cd BUDAlloc-Kernel
$ sudo make headers_install

INSTALL_HDR_PATH=/usr↪→

6. Enable linking for libbpf.

$ sudo vi /etc/ld.so.conf.d/99.conf
add "/usr/local/lib64"
$ sudo ldconfig

BUDAlloc-User Installation. You should proceed this part
after installing BUDAlloc-Kernel.

1. Install the Clang-17 compiler.

$./scripts/setup.sh

2. Build and install the user components.

$ make -j$(nproc)
$ sudo make install

[Note]: Default build is BUDAlloc-p(prevent) mode.
To build BUDAlloc-d(detect) mode, follow below instruc-
tion.

$ vim libkernel/include/kconfig.h
comment out:
#define CONFIG_BATCHED_FREE
#define CONFIG_ADOPTIVE_BATCHED_FREE
$ make -j$(nproc)
$ sudo make install

Installation guide for the related works. We used
ffmalloc, MarkUS and Dangzero libraries for our evalu-
ation. You can get an installation guide for each library in the
links below.

1. ffmalloc

https://github.com/bwickman97/ffmalloc

2. MarkUS

https://github.com/MarkUsProject/Markus

3. Dangzero

https://github.com/vusec/dangzero

A.3.2 Basic Test

After installing BUDAlloc-Kernel and BUDAlloc-User, you
can test your program with the following script in the BUDAl-
loc repository.

make unit_test

A.4 Evaluation workflow

We evaluated the performance, memory overhead, and bug
detectability of BUDAlloc compared to recent OTAs, FFmal-
loc, DangZero, and the GC-based MarkUs. In SPEC CPU
2006, BUDAlloc outperformed DangZero by 5% in full de-
tection mode and by 15% in prevention mode, with a memory
overhead of 30% compared to FFmalloc’s 207%, and better
bug detectability. BUDAlloc showed scalable performance
improvements in multithreaded PARSEC 3.0, surpassing FF-
malloc with more than 8 threads. Real-world tests with Nginx
and Apache demonstrated performance and memory overhead
comparable to GLIBC, without scalability issues. BUDAlloc
detected 27 out of 30 use-after-free vulnerabilities from recent
CVEs, and passed all robustness tests with Fuzzer and NIST
Juliet, with no issues found in HardsHeap after 24 hours.

A.4.1 Major Claims

(C1): BUDAlloc should demonstrate acceptable perfor-
mance and memory overhead on single-thread bench-
marks such as SPEC CPU 2006 and SPEC CPU 2017.

(C2): BUDAlloc should show scalable performance improve-
ments on multi-thread benchmarks such as PARSEC 3.0.

(C3): In prevention mode, BUDAlloc should successfully
prevent all use-after-free and double-free bugs in the
Juliet, HardsHeap, and CVE corpus.

(C4): In detection mode, BUDAlloc should detect all use-
after-free and double-free bugs in the CVE sets.

A.4.2 Experiments

All results will be stored in macrobench/result/<bench>.
Before running the script, we recommend extending the sudo
authentication timeout.

$ sudo visudo
Add the line "Defaults:<User_name>

timestamp_timeout=600"↪→

$ sudo -k

Bench script options In each script, you may configure
options according to your preferences. The available options
are as follows:

1. --LIBCS: Set library(s) to run. Default value is "glibc
BUDAlloc ffmalloc markus", which will run 4 li-
braries sequently.

2. --TASKSET: Set thread number of taskset command.
Default value is 19. which is required to bind the core
and reduce fluctuation. This also limits the additional
CPU resources consumed by MarkUs’s GC thread, un-
like other test cases.

3. --THREADS: [Only for PARSEC 3.0] Set the number of
threads to run. The default value is "1 2 4 8 16 32",
which will run program with 1, 2, 4, 8, 16, and 32 threads,
sequentially.

4. --CONNECTIONS: [Only for Apache2 and Nginx] Set
connection number of benchmark. Default value is "100
200 400 800", which will run 100, 200, 400, 800 con-
nections sequently.

5. --BENCH_SEC: [Only for Apache2 and Nginx] Set the
connection time for benchmark. Default value is 30.

Additionally, if you are testing DangZero, you should set
--LIBCS=dangzero in each benchmark script.

$./bench_xxx.sh --LIBCS=dangzero

Memory usage of DangZero. DangZero cannot account
for the memory usage with the default scripts. Unlike other
benchmarks, to get a resident set size, you have to add the
additional value by uncommenting the TRACK_MEM_USAGE
option.
(E1): [SPECCPU 2006] [1 human-minutes + 1.5 compute-

hour/lib + 3.5GB disk]: This will run SPECCPU_2006
for each library. Full test will test 4 libraries(glibc, BU-
DAlloc, ffmalloc, markus)
Preparation: Before starting, you should obtain and
install SPECCPU 2006 in the /home/<USER> directory.
Execution: Execute bench_spec2006.sh to run
SPECCPU 2006 benchmarks.
$ cd macrobench/spec2006
$./bench_spec2006.sh [OPTIONS]

Results: Results will be located in
result_<library_name>_<INT/FlOAT>.csv

(E2): [SPECCPU 2017] [1 human-minutes + 7 compute-
hour/lib + 11GB disk]: This will run SPECCPU 2017
for each library. Full test will test 4 libraries(glibc, BU-
DAlloc, ffmalloc, markus).
Preparation: Before starting, you should obtain and
install SPECCPU 2017 in the /home/<USER> directory.
Execution: Execute bench_spec2017.sh to run
SPECCPU 2017 benchmarks.
$ cd macrobench/spec2017
$./bench_spec2017.sh [OPTIONS]

Results: Results will be located in
result_<library_name>_<INT/FlOAT>.csv

(E3): [PARSEC 3.0] [1 human-minutes + 1-3 compute-hour
per cases, depending on library and thread numbers +
13GB disk]: This will run PARSEC 3.0 benchmark for
each library, also per different thread numbers. Full test
will test 4 libraries(glibc, BUDAlloc, ffmalloc, markus)
with 6 different thread numbers(1, 2, 4, 8, 16, 32).
Preparation: Install PARSEC 3.0 benchmark.
$ cd macrobench/parsec
$ sudo ./install.sh

Execution: Execute bench_parsec_threads.sh in
macrobench/parsec to run PARSEC 3.0 benchmarks.
$ cd macrobench/parsec
$ sudo ./bench_parsec_threads.sh

Results: Results will be located in the following file:
result_<library_name>_<thread_num>t.csv

Note for (E4), (E5): For (E4) and (E5), you should first set
up a 10G Ethernet connection between the server ma-
chine and client machine. Make sure to adjust the vari-
ables in macrobench/server_conf according to your
environment.

Host

$ cd macrobench/common
$./connect_10g server

Client
$ cd macrobench/common
$./connect_10g.sh client

(E4): [Apache2] [1 human-minutes + 0.5 compute-hour +
4GB disk]: This will run Apache2 benchmarks for each
library.
Preparation: Install Apache2 webserver.
$ cd macrobench/apache2
$./install.sh

Execution: Execute Apache2 benchmark.
$ cd macrobench/apache2
$ sudo ./bench_apache2.sh

If scripts don’t run as intended, you can man-
ually run host and client on each server. By
specifying "foreground" for the last argument of
run_apache_nginx_server.sh, it will run Apache2
server in the foreground.
Host
$ cd macrobench/common
$ sudo ./run_apache_nginx_server.sh

<apache2/nginx> <library> <num_threads>
foreground

↪→

↪→

Client
$ cd macrobench/common
$ sudo ./run_apache_nginx_client.sh

<apache2/nginx> <Num_connections>
<num_threads> <BENCH_SEC> <library>

↪→

↪→

Results: The results will be divided into two
parts. Performance (latency) will be recorded in
result_xxx.csv, and memory usage will be recorded
in apache2_memory_usage_xxx.csv.

(E5): [Nginx] [1 human-minutes + 3 compute-minute + 4GB
disk]: This will run Nginx benchmarks for each library.
Preparation: Install Nginx webserver.
$ cd macrobench/nginx
$./install.sh

Execution: Execute Nginx benchmark.
$ cd macrobench/nginx
$ sudo ./bench_nginx.sh

Results: The results will be separated into two
parts. Performance (latency) will be recorded in
result_xxx.csv, and memory usage will be recorded
in nginx_memory_usage_xxx.csv.

(E6): [CVE] [1 human-minutes + 30 compute-minute]: This
will run CVEs and check detect/prevent/vulnerable fea-
tures for each library.

Note: Our script cannot automatically classify all CVEs
because some UAF bugs occur internally or do not pro-
duce any output. In these cases, we classified them as
CANNOT_DETERMINE. For more precise checking, please
compile each program with AddressSanitizer or use an-
other method to detect Use-After-Free bugs. Detailed
information is provided in the README of each CVE.
Also, you should care about prevent and detect mode
in BUDAlloc. If you want to change the mode, please
refer to the [Note] in BUDAlloc installation section.
Preparation: Before starting, you should install all
CVE-related programs. You can easily install them with
the following command:
$ cd validation/cves/install_lib.sh
$ make
If make stops,
Please use this command
This will build programs sequently
$ make build_serial

Execution: Run all CVEs and get the result.
$ make run

Results: The results will be located in the following
file: validation/cves/result.csv.

(E7): [Juliet Suite] [1 human-minutes + 5 compute-minute]:
This will run Juliet Suite and check the correctness of
the allocator.
Preparation: Install Juliet Suite benchmark.
$ validation/juliet/install.sh

Execution: Execute Juliet Suite.
$ validation/juliet/bench_juliet.sh

Results: Executing Calling good should be passed,
as they are valid programs, and Calling bad should
incur segmentation fault, and they are invalid programs.

(E8): [HardsHeap] [1 human-minutes + 24 compute-hour]:
This will run HardsHeap Fuzzer and check the correct-
ness of the allocator.
Execution: Execute HardsHeap benchmark.
$ validation/hardsheap/run_hardsheap.sh

Results: After hardsheap execution, there should be no
invalid test cases.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

