ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

REPRODUCED

AVAILABLE

USENIX Security *24 Artifact Appendix: SIMURALI:
Slicing Through the Complexity of SIM Card Security Research

Tomasz Piotr Lisowski ®', Merlin Chlosta®, Jinjin WangT, Marius Muench”

TSchool of Computer Science, University of Birmingham
*CISPA Helmholtz Center for Information Security

A Artifact Appendix
A.1 Abstract

SIM cards are commonly considered as trusted entities in mo-
bile networks. But what if they were not? We design and im-
plement SIMURALI, a software platform for security-focused
SIM exploration and experimentation. At its core, SIMURAI
features a flexible, software implementation of a SIM. In con-
trast to existing SIM research tooling, that typically involves
a physical SIM card, a software implementation adds flex-
ibility by allowing to deliberately violate application- and
transmission-level behavior—a valuable asset for further ex-
ploration of SIM features and attack capabilities.

Along with our main artifact, the open-source SIMURALI
implementation, we provide additional experiments to support
the main claims of our paper. In particular, we demonstrate
that: Smartphones can, in practice, use SIMurai to authenti-
cate to cellular networks, that we enabled FirmWire-based
fuzzing of the proactive command SIM functionality, and
found crashes in baseband implementations.

A.2 Description & Requirements

Our main artifact is the SIMURAI platform. To replicate the
experiments described in our paper, we further provide an
experiment repository, that contains automated build scripts,
descriptions, and files for three setups, two experiments, and
two case studies. The three setups constitute common test
beds in cellular security research. As such, the functionality
of SIMURATI within these setups is a main feature.

Setups. These three setups showcase common ways of us-

ing SIMURAL, and are described in Section 6.1 of the paper.

(S1) Attaches SIMURAI to a COTS UE and registers the UE
on our test network based on YateBTS and srsRAN. This
setup requires physical hardware.

(S2) Attaches SIMURAI to a virtualized UE and network
based on srsUE and srsRAN.

(S3) Connects SIMURAI to an emulated baseband firmware
running inside the FirmWire emulation platform.

Experiments. Code for the main experiments conducted

with SIMURALI, described in Section 6.2 of the paper.

(E1) Re-implements SIM Spyware using SIMURAI. Re-
quires (S7) and physical hardware.

(E2) Launches a fuzzing campaign against emulated base-
band firmware. Requires (S3).

To ease the setup and replication, we provide automated

Docker images for all setups and experiments.

Case Studies. The case studies are described in Section

6.3 of the paper. These are not part of the SIMurai platform

and instead support the discussion of SIM-originating attacks

(i.e., to assess their real-world feasibility). We do not provide

automated experiment code due to (i) IP restrictions and (ii)

complexity of required hardware setups. Instead, we provide

packet captures as supplementary material.

(CS1) Demonstrates how a malicious SIM can send a crash-
ing payload to a UE.

(CS2) Demonstrates how a hostile applet is installed over the
air and sends the malicious payload to the UE.

A.2.1 Security, Privacy, and Ethical Concerns

We utilize Docker for sandboxing compilations and, in some
cases, entire experiments. As the artifact relies on a number
external dependencies, we suggest to exercise caution. S/ re-
quires a COTS UE, an SDR and a SIMtrace2. Please follow
local regulations regarding the use of the local RF spectrum,
change our configurations accordingly, and prevent leakage of
electromagnetic fields from the setups. Lastly, for the fuzzing
experiment, af1-system-config is run to optimize the ex-
perimentation host for fuzzing. This lowers the security of the
system, so please ensure that this is acceptable for the system
used for experimentation.

A.2.2 How to Access

* The SIMURAI implementation is available at:
https://github.com/tomasz-1lisowski/simurai/
tree/usenixsec2024-ae


https://orcid.org/0009-0000-2772-5616
https://github.com/tomasz-lisowski/simurai/tree/usenixsec2024-ae
https://github.com/tomasz-lisowski/simurai/tree/usenixsec2024-ae

Host 1

swSIM - Tcp/ip 8
<«—> 5 SIMtrace2 <—>i
swlCC @ UEI
ADB Server i
UE2
Faraday Cage

Figure 1: Overview of the physical setup (S1). SIMURAI runs
on Host 1 and is connected to UE1. UE2 uses sysmolISIM-
SJA2, and both UEs can be reached via ADB. The cellular
test network (2G/4G/5G) is run by Host 2.

» Reproducible setups, experiments, and auxiliary PCAPs:
https://github.com/tomasz-1lisowski/
simurai-usenixsec2024-ae/tree/
usenixsec2024-ae.

A.2.3 Hardware Dependencies

Only S/ and E1 have physical hardware dependencies:

e For (S1), one physical UE, a SIMtrace 2, and external
hardware for a cellular research network is required. In
the provided experiment setup, we use a Motorola One
Vision (XT1970-3) phone and a 2G network hosted via
YateBTS using a bladeRF software-defined radio.

e For El, one additional UE is required, with a SIM
allowing it to connect to the research network. As
above, we use a Motorola One Vision (XT1970-3) and a
sysmolISIM-SJA2 programmable SIM card.

All other setups and experiments do not require special hard-
ware and can be run on Linux-based x86 workstations. We
recommend at least 4 CPU cores with 8 GB of memory and
50 GB of disk space. During the artifact evaluation, a remote
machine was made available to the reviewers that had all
hardware dependencies connected.

A.2.4 Software Dependencies

Our experiments are known to work on an Ubuntu 22.04 host.
Additionally, the following software is required:
* Docker, for building and running the artifact code. We
provide installation instructions in the artifact repository.
» Wireshark, for inspecting packet captures of CS1 & CS2,
with a custom profile.
All other software dependencies (e.g., pcsc, srsRAN,
FirmWire, ADB, scrcpy, etc.) are automatically fetched as
part of the Docker-based build setup for the experiments.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Obtain the SIMURALI experiment repository:

$ git clone --branch usenixsec2024-ae \
https://github.com/tomasz-lisowski/simurai-
usenixsec2024-ae.qgit

Then, run the install script' from the experiment repository:

$ ./1__install.sh

Note that this will ask for the identifier of the setup, experi-
ment, or case study that should be installed.

A.3.2 Basic Test

We prepared a script to perform basic tests step-by-step:

$ ./2__basic_test.sh

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): SIMURAL is a flexible tool for SIM security research
and exploration. It can be integrated into representative
cellular research lab setups and connected to an emu-
lation platform. This is described in Section 6.1 of the
paper and is demonstrated by E-S1, E-S2, and E-S3.

(C2): SIMURAI can simulate SIM spyware. This is de-
scribed in Section 6.2.1 of the paper and is demonstrated
by E-E1.

(C3): SIMURAI enables virtual fuzzing campaigns against
emulated baseband firmware, allowing the discovery of
CVE-2023-50806 and CVE-2024-27209 on unpatched
modems. This is described in Section 6.2.2 of the paper
and demonstrated by E-E2.

(C4): A SIM interposer can send malicious inputs to a UE,
without interaction of the SIM card. This is described
in Section 6.3.1 of the paper and demonstrated by the
packet captures provided for E-CS1.

(C5): Malicious SIM applets can be provisioned remotely
over the air without interaction by the victim. This is
described in Section 6.3.2 of the paper and demonstrated
by the packet captures provided for E-CS2.

Irequires Docker, see installation instructions in the artifact repository
documentation.


https://github.com/tomasz-lisowski/simurai-usenixsec2024-ae/tree/usenixsec2024-ae
https://github.com/tomasz-lisowski/simurai-usenixsec2024-ae/tree/usenixsec2024-ae
https://github.com/tomasz-lisowski/simurai-usenixsec2024-ae/tree/usenixsec2024-ae

A.4.2 Experiments

Each experiment contains a README.md file in their respec-
tive folder. This file contains more detailed instructions and
guidance for the interpretation of results. We also supply a
global 1__install.shand 2__run.sh scripts that allow in-
stallation and execution of specific setups and experiments.
Alternatively, it is possible to run the scripts from within the
respective setup or experiment folders.
(E-S1): Setup 1 - Physical UE.
[20 human-minutes, 10 compute-minutes, 10GB disk]
Shows how SIMURALI integrates with physical UEs (C1).

Preparation. Create a physical setup similar to the
setup shown in Figure 1. Ensure that UEs (without
SIMURAI) can attach to the research network. On the
host connected to the UEs, run:

$ ./1__setup/l__physical_ue/l__install.sh

Execution. To execute the experiment, run:

$ ./1__setup/l_ physical_ue/2__run.sh 2

The command-line argument (in this case 2), alters how
the setup will be run. Please refer to the repository for
more information.
Results. Both UEs successfully registered on the net-
work. The network status of UE can be obtained by
entering the code *#*#4636#+*#* in the dialer.

(E-S2): Setup 2 - srsUE.
[10 human-minutes, 20 compute-minutes, 10GB disk]
Integrates SIMURAI with srsUE and connects to
srsRAN via zeroMQ (C1).

Preparation. Build the docker environment:

$ ./1__setup/2__srsue/l__install.sh

Execution. Run the experiment script:

$ ./1__setup/2__srsue/2__run.sh

Results. A 20 second initialization period for srsRAN,
and a 10 second-long exchange between the srsSRAN
network, srsUE, and SWSIM, that involves around 16
APDU messages and successful Milenage authentica-
tion. The detailed logs for srsSEPC, srsENB, srsUE, and
SWSIM, are available in 1og/*.1log files.
(E-S3): Setup 3 - Emulation Platform.

[10 human-minutes, 30 compute-minutes, 10GB disk]
Showcases SIMURAT’s integration with FirmWire (C1).

Preparation. Build the docker environment:

$ ./1__setup/3__emulated_ue/l__install.sh

Execution. Run the experiment script:

$ ./1__setup/3__emulated_ue/2__run.sh

Results. A 5 minute long run of FirmWire showcasing
interaction between the emulator and FirmWire, as well
as around 160 exchanged command-response pairs con-
taining SWSIM ICCID. The detailed FirmWire log is
stored in result/firmwire.log.

(E-E1): Experiment 1 - Simulating Spyware.

[30 human-minutes, 5 compute-minutes, 10GB disk]
Demonstrates SIMURATI simulating SIM spyware (C2).

Preparation. Build the docker environment:

$ ./2__experiment/1l__spyware/l__install.sh

Execution. Run the experiment script:

$ ./2__experiment/1__spyware/2__run.sh 2

The command-line argument (in this case 2), alters how
the setup will be run. Please refer to the repository for
more information.

Results. Once the “SIM toolkit” application shows up
in the application list on the phone, you can click the
item named “Steal location via SMS”, then “Run”. This
will trigger the spyware on SIMurai. Once the spyware
is activated, SIMurai will proceed by sending a request
to obtain location information of UE1. Then the location
will be sent to UE2 using an SMS.

(E-E2): Experiment 2 - Fuzzing emulated UEs.

[20 human-minutes, 12 compute-hours, 20GB disk]
Runs a fuzzing campaign with FirmWire, leveraging the
initial state provided by SIMURAI (C3).

Preparation. Prepare the experiment environment:
$ ./2__experiment/2__fuzzing/l__install.sh
Execution. Run the experiment script:

$ ./2__experiment/2__fuzzing/2__run.sh

Results. A fuzzing campaign with found crashes. The
AFL output directory is located in result/out/. Test
cases can be replayed by running:

$ ./2__experiment/2__fuzzing/3__replay.sh
replay_target

(E-CS1): Case Study 1 - Interposer.

[10 human-minutes, 10MB disk]

Showcases how a modified interposer sends a ma-
licious payload to a UE (C4). Detailed description,
diagrams, and artifact files are available under
3_ case_study/1__interposer and the associated
README . md file.

Preparation. Install the Wireshark profile.

Execution. Inspect the provided packet captures with
Wireshark.

Results. The two SIM sniffers show that the interposer
manipulates the SIM communication, and injects the
crashing payload.



(E-CS2): Case Study 2 - OTA update.
[10 human-minutes, 50MB disk]
Showcases a hostile applet being provisioned to the
SIM via an OTA update in a 4G network (C5). Detailed
description, diagrams, and artifact files are available
under 3_ case_study/2_ remote_ota_install and
the associated README . md file.

Preparation. Install the provided Wireshark profile. It
can be found inside util/wireshark_profile.
Execution. Inspect the provided packet captures with
Wireshark, and the screen capture. The PCAP shows
both cellular traffic and SIM communication to observe
the installation.

Results. Firstly, no applet is present (shown in screen
capture). Then, the malicious applet is installed remotely
over the cellular connection. Subsequently, the crashing
payload is sent to the UE.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.


https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


