
USENIX Security ’24 Artifact Appendix: DEEPTYPE: Refining Indirect
Call Targets with Strong Multi-layer Type Analysis

Tianrou Xia
Pennsylvania State University

Hong Hu
Pennsylvania State University

Dinghao Wu
Pennsylvania State University

A Artifact Appendix

A.1 Abstract
As presented in the paper, the artifact is a prototype of Strong
Multi-Layer Type Analysis (SMLTA), named DEEPTYPE. It
is a static analysis tool that employs SMLTA to precisely and
efficiently identify indirect call targets. Compared to Type-
Dive, the prototype of MLTA, DEEPTYPE is able to narrow
down the scope of indirect call targets and reduce runtime and
memory overhead. This appendix describes how to reproduce
the following experiment results in the paper:

• Average number of indirect call targets (ANT) of
DEEPTYPE, DT-weak, and DT-noSH.

• Runtime overhead of DEEPTYPE and DT-nocache.

• Memory overhead of DEEPTYPE.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact performs static analysis on benchmarks to identify
indirect call targets, which does not cause any security, privacy,
or ethical concern to evaluators’ machines.

A.2.2 How to access

The artifact is available on GitHub: https://github.com/
s3team/DeepType/tree/AE.

A.2.3 Hardware dependencies

This artifact does not have specific requirements on hardware,
but hardware features different from those for the experiments
in the paper (8-core Intel Core i9-9880H CPU @ 2.30GHz and
16GB DDR4 RAM) may result in different runtime overhead.

A.2.4 Software dependencies

The experiments in the paper were performed on Ubuntu
20.04 (64-bit). The following tools and environments are also
required: cmake-3.5.1, LLVM-15.0, and valgrind-3.15.0.

A.2.5 Benchmarks

The bitcode (compiled with O0 optimization level) of bench-
marks in the paper are available at https://drive.google.
com/file/d/1U9rMr4UC0uxVhAH7p0R3127lJpaaQMuj/
view?usp=sharing.

A.3 Set-up

A.3.1 Installation

Download the source code of DEEPTYPE and follow the
Setup Guide in README.md.

A.3.2 Basic Test

Follow the steps in How to Use to perform a basic test. The
expected output is listed in Analysis Results.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): DEEPTYPE reduces average number of indirect call
targets (ANT) across most benchmarks when compared
to the state-of-the-art tool TypeDive. This is proven by
the experiment (E1), which reproduces results described
in Section 7.1 of the paper.

(C2): DEEPTYPE significantly reduces runtime overhead
when compared to TypeDive. The variant DT-nocache
also demonstrates reduced runtime overhead. This is
proven by experiment (E2), which reproduces results
described in Section 7.2 of the paper.

(C3): DEEPTYPE shows lower memory overhead than Type-
Dive, while the subtle difference between two tools re-
mains consistent across all benchmarks. This is proven
by experiment (E3), which reproduces results described
in Section 7.2 of the paper.

(C4): The ANT of DT-noSH is close to that of DEEPTYPE,
indicating that disabling the special handlings has min-
imal impact on the effectiveness of DEEPTYPE, which
reveals the primary role of SMLTA in accuracy improve-
ment. This is proven by experiment (E4), which repro-
duces results described in Section 7.3 of the paper.

https://github.com/s3team/DeepType/tree/AE
https://github.com/s3team/DeepType/tree/AE
https://drive.google.com/file/d/1U9rMr4UC0uxVhAH7p0R3127lJpaaQMuj/view?usp=sharing
https://drive.google.com/file/d/1U9rMr4UC0uxVhAH7p0R3127lJpaaQMuj/view?usp=sharing
https://drive.google.com/file/d/1U9rMr4UC0uxVhAH7p0R3127lJpaaQMuj/view?usp=sharing
https://github.com/s3team/DeepType?tab=readme-ov-file#setup-guide
https://github.com/s3team/DeepType?tab=readme-ov-file#how-to-use
https://github.com/s3team/DeepType?tab=readme-ov-file#analysis-results


(C5): DT-weak demonstrates a higher ANT than DEEPTYPE
across most benchmarks, indicating that recording entire
multi-layer types, rather than two-layer types, effectively
refines indirect call targets. This is proven by experiment
(E5), which reproduces results described in Section 7.3
of the paper.

A.4.2 Experiments

(E1): [Measure ANT of DEEPTYPE ]
How to: Follow the steps in How to Use to analyze each
benchmark.
Results: See "Avg. Number of indirect-call targets" in
output.
Time consumption: 1 to 2 minutes for linux, several
seconds per other benchmarks.
Memory consumption: 4 GB memory for linux, 70 to
140 MB memory per other benchmarks.

(E2): [Measure runtime overhead]
How to: Build DT-nocache following the guide in Con-
figurations. For each benchmark, run DEEPTYPE and
DT-nocache multiple times to achieve average execution
time. Note that, the order of running DEEPTYPE and DT-
nocache affects the runtime overhead because the first
execution may need to load data and code from disk into
memory and cache while the afterwards executions may
quickly access data from memory and cache. So, we ran
DEEPTYPE and DT-nocache 3 times for each benchmark
after warming up and calculated the average execution
time to mitigate the impact of hardware conditions and
operating system states.
Results: See the execution time at the end of the output.
Time consumption: 1 to 2 minutes for linux, several
seconds per other benchmarks.
Memory consumption: 4 GB memory for linux, 70 to
140 MB memory per other benchmarks.

(E3): [Measure memory overhead]
How to: Use Massif tool in Valgrind tool suite to evalu-
ate memory consumption. Here are the steps:

1. Generate Massif’s profiling data, which will be
written in a file named massif.out.<pid>. Replace
filename.bc with each benchmark.

$ cd path/to/DeepType/build/lib
$ valgrind --tool=massif --pages-as-

heap=yes ./kanalyzer filename.bc

2. Show the information gathered by massif.

$ ms_print massif.out.<pid>

3. Determine the snapshot indicating the peak of mem-
ory consumption. For example, the peak is 76 when
DEEPTYPE is analyzing sqlite.

Detailed snapshots: [1, 17, 23, 28, 33,
41, 50, 52, 62, 72, 76 (peak)]

4. Find the memory consumption at the peak snapshot.
For example, the memory used at snapshot 76 is
139.2 MB when DEEPTYPE is analyzing sqlite.

Results: The memory consumption of DEEPTYPE for
each benchmark.
Time consumption: Several minutes per benchmark,
including the execution time of Valgrind tools and man-
ual analysis.
Memory consumption: 4 GB memory for linux, 70 to
140 MB memory per other benchmarks. Valgrind’s mem-
ory overhead can range from around 100% to 500% of
the original memory usage.

(E4): [Measure ANT of DT-noSH]
How to: Follow the guide in Configurations to build
DT-noSH. Use DT-noSH to analyze each benchmark.
Results: See "Avg. number of targets" in output.
Time consumption: 1 to 2 minutes for linux, several
seconds per other benchmarks.

(E5): [Measure ANT of DT-weak]
How to: Follow the guide in Configurations to build
DT-weak. Use DT-weak to analyze each benchmark.
Results: See "Avg. number of targets" in output.
Time consumption: 1 to 2 minutes for linux, several
seconds per other benchmarks.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://github.com/s3team/DeepType?tab=readme-ov-file#how-to-use
https://github.com/s3team/DeepType?tab=readme-ov-file#configurations
https://github.com/s3team/DeepType?tab=readme-ov-file#configurations
https://github.com/s3team/DeepType?tab=readme-ov-file#configurations
https://github.com/s3team/DeepType?tab=readme-ov-file#configurations
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


