
USENIX Security ’24 Artifact Appendix:
Election Eligibility with OpenID:

Turning Authentication into Transferable Proof of Eligibility

Véronique Cortier Alexandre Debant Anselme Goetschmann Lucca Hirschi

Inria, CNRS, Université de Lorraine, France

A Artifact Appendix

A.1 Abstract
To complement the Security Analysis and the Proof of Con-
cept sections of our paper on transferable proofs of eligibility,
we provide a set of machine-checkable symbolic proofs as
well as a proof-of-concept implementation of our protocol.
The artifact contains three parts:

1. ProVerif files modeling our protocol and steps to repro-
duce our mechanized security analysis of the OIDEli
protocols with ProVerif,

2. a Rust implementation of the ZKPs required by OIDEli-
zk along with some benchmarks, and

3. a full-fledged proof-of-concept implementation of
OIDEli-zk integrated in the Belenios voting system.

A.2 Description & Requirements
The three parts composing the artifact can be considered
independently.
ProVerif files: Symbolic proofs that can be verified using

the ProVerif tool and ensuring that the OIDEli protocols
guarantee the claimed security properties.

oideli-zkp library and benchmarks: A Rust library
implementing the ZKP design specified in our paper.
It is accompagnied by some benchmarks to evaluate its
performance.

PoC integration in Belenios: A patch of the Belenios vot-
ing system to integrate the OIDEli-zk protocol, using
oideli-zkp to generate ZKPs and Google as OpenID
provider. The proof-of-concept is bundled as a docker
container allowing simple execution.

A.2.1 Security, privacy, and ethical concerns

Since the experiments are run locally, none of the three parts
of the artifact raise any security, privacy or ethical concerns.
We only note the need for the creation of an OpenID service

on Google Cloud, which could be abused if the corresponding
client id or secret was published.

A.2.2 How to access

The latest version of the artifact is accessible on the follow-
ing Git repository: https://gitlab.inria.fr/oideli/
oideli-artifact/-/releases/v1.0.

A.2.3 Hardware dependencies

ProVerif files: No particular requirement, the proofs can be
verified on any standard laptop.

oideli-zkp: The execution of the benchmarks requires
a notable amount of memory. For the experiment de-
scribed below that runs on 32 cores, 160 GB of RAM
are necessary, corresponding to 5 GB per core. Further,
we used a machine equiped with two AMD EPYC 7F52
16-Core processors running at a maximal frequency of
3.9 GHz.

PoC: A single ZKP is generated during the experiment, re-
quiring around 5 GB of memory.

A.2.4 Software dependencies

ProVerif files: The version 2.05 of the ProVerif tool has to
be installed to verify the proofs. Instructions to install
the tool can be found on the following page: https:
//bblanche.gitlabpages.inria.fr/proverif/.

oideli-zkp: A Rust environment is required to build the
library and run the benchmarks. The version 1.76.0-
nightly of the toolchain needs to be installed with the
following commands.
rustup toolchain install nightly -2023-12-01
rustup default nightly -2023-12-01

PoC: The execution of Belenios relies on docker as container
platform. Additionally, packages are downloaded from
the opam package manager (https://opam.ocaml.
org/) during the build of the docker image.

The experiments were successfully run on Debian 12 and
Fedora 40.

https://gitlab.inria.fr/oideli/oideli-artifact/-/releases/v1.0
https://gitlab.inria.fr/oideli/oideli-artifact/-/releases/v1.0
https://bblanche.gitlabpages.inria.fr/proverif/
https://bblanche.gitlabpages.inria.fr/proverif/
https://opam.ocaml.org/
https://opam.ocaml.org/


A.2.5 Benchmarks

No additional data is needed to run the experiments contained
in this artifact.

A.3 Set-up
A.3.1 Installation

We refer to A.2.4 for the installation of the required environ-
ment and to the Preparation step of each experiment for the
remaining set-up.

A.3.2 Basic Test

ProVerif files: The first ProVerif file can be executed with
the following command and should result in two true
queries.
proverif -lib default.pvl oideli_id -

eligibility -and-others.pv

oideli-zkp: The following command should print the
help of the prove command provided by oideli-zkp:
cargo run --release prove --help

PoC: Once the docker container is built, the following com-
mand should start a local instance of Belenios accessible
from :
docker run --network host --name belenios -

oideli --rm -it belenios -oideli

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our OIDEli protocols ensures the eligibility verifiabil-
ity and id-hiding properties as described by experiment
(E1) in Section 5.2 and illustrated in Table 4 of our paper.

(C2): Our oideli-zkp Rust library can generate above 40
proofs per hour and per core on hardware specified in
Appendix A.2.3. This is shown by experiment (E2) de-
scribed in Section 6.2 of our paper and with results are
reported in Table 5.

(C3): OIDEli-zk can be intergrated in a state-of-the art voting
system using an existing OpenID provider to ensure
eligibility verifiability. In particular, this can be done for
the Belenios voting system and Google as voting system,
as described by experiment (E3) in Section 6.3 of our
paper.

A.4.2 Experiments

(E1): ProVerif proofs [10 human-minutes + 5 compute-
minutes]: verify the symbolic proofs of the OIDEli pro-
tocols using the ProVerif prover.
Preparation: Navigate to the proverif-files direc-
tory in a local copy of the artifact and make sure ProVerif
is installed as detailed in A.2.4.

Execution: Run ProVerif for each file with the follow-
ing command:
proverif -lib default.pvl <file.pv>

For more detailed instructions, refer to the README in
the corresponding directory.
Results: Each ProVerif run is concluded by a “Veri-
fication summary” indicating which queries could be
verified or not. The README file details the expected
output for each ProVerif file to obtain the results reported
in Table 4 of our paper.

(E2): oideli-zkp benchmarks [5 human-minutes + 5
compute-hours + 160GB RAM]: evaluate the perfor-
mance of oideli-zkp by generating ZKPs on test data.
Preparation: Install the Rust environment described
in A.2.4 to execute the benchmarks. Navigate to the
oideli-zkp directory in a local copy of the artifact.
Execution: The benchmark generating ZKPs on 32
cores for 5 hours can be executed with the following
command:
PARALLELISM=32 RUNNING_TIME_MINUTES =300 cargo

run --release --example parallel_proofs

When executing the benchmark on a machine with
less memory, the PARALLELISM parameter allows to per-
form a similar execution but without using as many
workers, each needing up to 5GB of RAM. More de-
tails about the benchmark execution are given in the
README_benchmarks file.
Results: At the end of the benchmark execution, the
number of completed proof generation is reported. This
number was 6736 in our case, yielding a proof rate of
1347.2 proof per hour. It might vary depending on the
hardware and other condition of the environment but
should be similar for hardware close to the one described
in A.2.3.

(E3): PoC integration of OIDEli-zk in Belenios [20 human-
minutes + 2 compute-minutes]: cast a ballot in a test
election on Belenios using Google as OpenID provider.
Preparation: The README of the artifact provides
detailed instructions on how to prepare the execution of
this proof-of-concept implementation. On one hand, the
docker container with Belenios and oideli-zkp has to
be built, which might take a few minutes. On the other,
an OpenID service has to be set up in the Google Cloud
console and a Gmail address has to be added as test user.
Execution: Once the docker container is running, a test
election can be created with via the command line, as
described in the README. A ballot can then be cast
by the voter with the test Gmail address. Finally, the
verifiability checks can be executed to ensure that the
eligibility proof in the cast ballot is valid.
Results: The steps above should be successful and the
raw ballot visible in the ballot box should contains a
oideli_data field with an eligibility proof eliproof.

http://localhost:8001


A.5 Notes on Reusability
ProVerif files: Beyond proofs for the protocols in scope, the

ProVerif files provide an example of protocol modeling
which can be useful to produce symbolic proofs in other
similar contexts.

oideli-zkp: The Rust library is accompagnied by a well
documented command line interface allowing direct ac-
cess to its functionalities. Each gadget of the circuit is
implemented in a separate module with dedicated and
comprehensive unit tests following software engineering
best practices, making the project accessible to anyone
interested in inspecting and understanding it.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


