
USENIX Security ’24 Artifact Appendix: Defects-in-Depth: Analyzing
the Integration of Effective Defenses against One-Day Exploits in Android

Kernels

Lukas Maar
Graz University of Technology

Florian Draschbacher
Graz University of Technology and A-SIT Austria

Lukas Lamster
Graz University of Technology

Stefan Mangard
Graz University of Technology

A Artifact Appendix

A.1 Abstract

We systematically analyze publicly available one-day exploits
targeting the Android kernel over the past three years. We then
demonstrate that integrating defense-in-depth mechanisms
from the mainline Android kernel could mitigate 84.6 % of
these exploits. This percentage serves as the ground truth for
how secure mobile devices could be if their kernels were up to
date with these defense mechanisms enabled. In a subsequent
analysis of 994 devices, we reveal that the level of security
that is actually achieved is severely lacking compared to the
mainline Android kernel. This achieved security varies sig-
nificantly depending on the vendor, ranging from mitigating
28.8 % to 54.6 % of exploits, indicating a 4.62 to 2.951 times
worse scenario than the mainline kernel.

The artifacts include the dataset of 994 devices as well
as the fully automated approach to determining the security
achieved by vendor-specific kernels. For our dataset, we in-
clude the extracted kernel binaries with kallsyms of the top 7
vendors, i.e., Samsung, Xiaomi, Oppo, Vivo, Huawei, Realme
and Motorola, along with Google, OnePlus and Fairphone,
representing more than 84 % of the global market. For the
automated approach, we provide various Python and shell
scripts to reproduce the results of our paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The artifacts do not perform any destructive steps. Crucially,
while we provide the dataset of kernel binaries and kallsyms
vulnerable to one-days for the artifact evaluation, we do not
open source these as they could be used in a malicious intent.
We explicitly mark the dataset as restricted view access only
to the reviewers via Zenodo.

1Factors of 1−0.288
1−0.846 and 1−0.546

1−0.846 , respectively.

A.2.2 How to access

We provide the source code (github) of the automated ap-
proach to determining the achieved security of vendor-specific
kernels, and the compressed dataset (zenodo about 45 GB).
Crucially, the uncompressed dataset is about 130 GB.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

A Linux system with python3 and the following packages
installed: argparse, csv, json, os, subprocess, re, numpy,
and matplotlib.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

1. Install python3 with the above requirements.

2. Clone our github repository (github) into the
/repo/path directory.

3. Download the compressed kernel binaries with
kallsyms files for our 994 evaluated devices (zenodo).

4. Decompress the kernel binaries and the kallsyms files
to the appropriate vendor directory, e.g. tar cfvz
google.tar.gz /repo/path/google/firmwares.

A.3.2 Basic Test

1. Execute basic_test.py within /repo/path.

https://github.com/IAIK/DefectsInDepth/tree/artifact-evaluation
https://zenodo.org/uploads/12170239?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6Ijc2ZDc3OTFmLTk5NTktNDZmYy1iN2I2LTU0OGM1MDk0MjIzNCIsImRhdGEiOnt9LCJyYW5kb20iOiJhNTNlODVkNDBkZjYyZWJkYzc1OWU4MTlkZGY3YWQ4MiJ9.qyTXCcX6UxMR04g-9yxsMGzF_3cwy5moEZGG0CwbzofKOwcCofCLtMdPiw2H4eGeY9YF5lvkCTZ1IqxA_dRsr
https://github.com/IAIK/DefectsInDepth/tree/artifact-evaluation
https://zenodo.org/uploads/12170239?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6Ijc2ZDc3OTFmLTk5NTktNDZmYy1iN2I2LTU0OGM1MDk0MjIzNCIsImRhdGEiOnt9LCJyYW5kb20iOiJhNTNlODVkNDBkZjYyZWJkYzc1OWU4MTlkZGY3YWQ4MiJ9.qyTXCcX6UxMR04g-9yxsMGzF_3cwy5moEZGG0CwbzofKOwcCofCLtMdPiw2H4eGeY9YF5lvkCTZ1IqxA_dRsr


2. This script will output [+] Basic test success if all
software requirements are installed and all kernel bina-
ries and kallsyms files are unpacked.

A.4 Evaluation workflow

A.4.1 Major Claims

We provide artifacts verifying the following claims:
(C1): We demonstrate that the 994 devices we analyzed can,

on average, prevent 15.2 of the 26 one-day exploits (as
shown in Figure 9 and described in Section 5.3.1 Sus-
ceptibility). This is proven by (E2).

(C2): We demonstrate that protection against one-day ex-
ploits is highly vendor dependent (as shown in Figures
10c-l and described in Section 5.3.1 Susceptibility per
Vendor). This is proven by (E3).

(C3): We demonstrate that the Android kernel version used
by vendor-provided kernel varies (as showsn in Figure 11
and described in Section 5.3.1 Susceptibility per Kernel
Version). This is proven by (E4).

(C4): We demonstrate that the susceptibility depends on the
Android kernel version (as shown in Figure 12 and de-
scribed in Section 5.3.1 Susceptibility per Kernel Ver-
sion). This is proven by (E5).

A.4.2 Experiments

Before performing experiments (E2-5), please perform exper-
iment (E1), where all scripts are executed in /repo/path.
(E1): Create files with one day’s susceptibility [30 human-

seconds + 30 computer-minutes]:
How to: Execute ./do_all.sh.
Execution: This script internally executes our evalua-
tion script (i.e., evaluate.py) with all of our vendor-
specific configuration files (located in ./config) needed
for the following experiments.
Results: It outputs all the required csv files containing
the susceptibility per device, per vendor and per kernel
version. These files are stored in the output directory.

(E2): How to: Execute ./gen_average.py.
Results: It outputs the simplified version of Figure 9.

(E3): How to: Execute ./gen_plot.py
</path/to/susceptibility/file>.
Execution: The </path/to/susceptibility/file>
should be a csv file created in (E1), e.g., ./gen_plot.py
output/google_one_day_analysis.csv outputs Fig-
ure 10j.
Results: It outputs the Figures 10c-l.

(E4): How to: Execute ./gen_kernel_version_heatmap.py.
Results: It outputs the Figure 11.

(E5): How to: Execute ./gen_one_day_heatmap.py.
Results: It outputs the Figure 12.

A.5 Notes on Reusability
We provide the kernel binaries and kallsyms dataset for arti-
fact evaluation instead of the firmware images, because this
dataset has a size of about 45 GB compressed and 130 GB
uncompressed. On the other hand, the entire set of firmware
images is several terabytes in size, making it much more diffi-
cult to make this set available.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


