
USENIX Security ’24 Artifact Appendix: Reef: Fast Succinct
Non-Interactive Zero-Knowledge Regex Proofs

Sebastian Angel⋆ Eleftherios Ioannidis⋆ Elizabeth Margolin⋆ Srinath Setty† Jess Woods⋆
⋆University of Pennsylvania †Microsoft Research

A Artifact Appendix

A.1 Abstract

We present the artifact of Reef (USENIX SECURITY 2024).
It is a Docker container that makes installing Reef very
straightforward. Once the container is built, the scripts to re-
produce our experiments can be found in https://github.
com/eniac/Reef/blob/main/tests/scripts. These run
Reef end-to-end: we commit to a particular document, com-
pile a particular regex to R1CS, and then prove and verify
(non)matching of that regex with that document. Reef is writ-
ten in Rust.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no risk to a machine’s security or data privacy during
evaluation.

A.2.2 How to access

The Docker image for Reef’s artifact can be found on
GitHub: https://github.com/eniac/Reef/releases/
tag/v1.0.0-baseline

A.2.3 Hardware dependencies

Evaluating "no recursion" baseline requires a sufficient
amount of RAM memory (>80GB). Reef and the other base-
lines require <20GB. The baselines also require the ADX and
BMI2 CPU features (due to circom).

A.2.4 Software dependencies

The Docker container uses Cargo, Rust’s build system and
package manager, to fetch all of Reef’s dependencies. Docker
community, latest version is required.

A.2.5 Benchmarks

We have four motivating applications and datasets.

(1): Password Strength Good passwords: randomly gener-
ated; Bad passwords: from NordPass list of the top 200
most common passwords [2], a list of weak passwords.

(2): Email Redactions Enron email dataset [3].
(3): ODoH Blocklisting Regexs: Pi-hole [1], which is a

DNS sinkhole; Queries: randomly generated.
(3): Genetic Matching Base pairs and common mutations

of the BRCAI and BRCAII genes, available from the US
National Institutes of Health [4, 5].

All of the Regexs for our experiments can be found in
Figure 36 of our (extended eprint) paper [6]. All of the doc-
uments can be found in our repo: https://github.com/
eniac/Reef/tree/main/tests/docs.

A.3 Set-up
Make sure you have installed Docker CE: https://docs.
docker.com/get-docker/.

A.3.1 Installation

Get this version of the github: https://github.com/
eniac/Reef/releases/tag/v1.0.0-baseline and build
the Docker image:

docker build -t reef .
docker run -m 16g -it reef

The memory requirements can be changed depending on
which experiments you are planning on running.

A.3.2 Basic Test

A simple example is to try to prove and verify that the doc-
ument regex .*b (any string that ends with a b) matches the
document aaaaaaaab, using the ascii alphabet.

echo aaaaaaaab > document
reef -d document --commit ascii
reef -d document -r ".*b" --prove ascii
reef -r ".*b" --verify --cmt-name document.cmt ascii

After each reef step, you should see "reef", and also "Proving
Finished"/"Verification Finished", respectively. There will
also be some auxiliary information printed about the batch
size, number of constraints, and which optimizations are on.

https://github.com/eniac/Reef/blob/main/tests/scripts
https://github.com/eniac/Reef/blob/main/tests/scripts
https://github.com/eniac/Reef/releases/tag/v1.0.0-baseline
https://github.com/eniac/Reef/releases/tag/v1.0.0-baseline
https://github.com/eniac/Reef/tree/main/tests/docs
https://github.com/eniac/Reef/tree/main/tests/docs
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://github.com/eniac/Reef/releases/tag/v1.0.0-baseline
https://github.com/eniac/Reef/releases/tag/v1.0.0-baseline


A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Proving is efficient in terms of time and memory for a
variety of apps, docs, regexes. This is clear in the prov-
ing/solving/verification times/memory usage/proof and
commitment size of (E4), but especially in relation to
the baseline (E1), which represents the basic state of the
art before Reef.

(C2): Reef’s use of recursion and SAFAs is a better general-
purpose solution than non-recursive proof systems and
DFAs. It also makes possible applications that were not
previously possible, like DNA (a large document) and
passwords (a complicated Regex). Compare (E3) to (E1)
and (E2).

(C3): Reef’s nlookup optimizations (projections and hybrid
tables) provide meaningful benefits. This is proven by
the difference in outcomes of (E3) and (E4), especially
in the case of the DNA application.

A.4.2 Experiments

We include two sets of experiments. The regular experiments
(E1, E2, E3, E4) which can be run to get the results in the
paper. However, many of the baselines take multiple days to
run. As an alternative we also include a set of mini experi-
ments (E1-mini, E2-mini, E3-mini, E4-mini). These mini
experiments are limited to those applications that can finish
in under 1 hour.

Note that most of the experiments require recompiling Reef
with the correct flags. This is included in each experiment’s
script. We reference figures from our eprint [6] in the follow-
ing text.
(E1): DFA Baseline [ 7.5 human-hours + 24 compute-hours

+ 76GB disk]
Execution: ./tests/scripts/naive.sh
Results: Written to ./tests/results/memory,
./tests/results/timings.
Relevant memory files for DFA baselines in
./tests/results/memory with _naive suffix.
Timings written to corresponding application file in
./tests/results/timings. Each individual experi-
ment has a header: {first 10 characters of the
input}_{length of the input},{experiment
type},{timestamp},{regex},{# automata
transitions},{number of automata states}.
DFA baseline experiments have naive as the experi-
ment type in the header. We have an optional Jupyter
Notebook script to help interpret the raw results files:
DataCleaning.ipynb. Results should match Figure 7:
Column 2, Figure 32, Figure 33: Column 5-6, Figure 34:
Column 4-5.

(E1-mini): DFA mini Baseline [ 1 human-hour + 10
compute-hours + 6GB disk]
Execution: ./tests/scripts/naive-mini.sh
Results: See (E1). Mini experiments contain a single
iteration of each experiments, as opposed to 10. Addi-
tionally, due to their long execution time naive-mini
excludes the email applications and only runs the ODOH
applications. Results should be consistent with the
ODOH rows of: Figure 7: Column 2, Figure 32, Fig-
ure 33: Column 5-6, Figure 34: Column 4-5.

(E2): DFA + Recursion Baseline [46 human-hours + 52
compute-hours + 6GB disk ]
Execution: ./tests/scripts/nwr.sh
Results: See (E1). Relevant memory files are suffixed
_nwr. DFA + Recursion Baseline experiments have nwr
as the experiment type in the header. Results should
match Figure 7: Column 3, Figure 31, Figure 33: Column
5-6, Figure 34: Column 6-7.

(E2-mini): DFA+Recursion mini Baseline [ 25 human-
minutes + 4 compute-hours + 1.5GB disk]
Execution: ./tests/scripts/nwr-mini.sh
Results: See (E1-mini). Due to their long execution
time nwr-mini excludes the email applications and only
runs the ODOH applications. Results should be con-
sistent with the ODOH rows of: Figure 7: Column 3,
Figure 31, Figure 33: Column 5-6, Figure 34: Column
6-7.

(E3): SAFA + nlookup Baseline [3.5 human-hours + 34
compute-hours + 18GB disk]
Execution: ./tests/scripts/safa_nlookup.sh
Results: See (E1). Relevant memory files are suffixed
_safa_nlookup. SAFA + nlookup Baseline experi-
ments have safa+nlookup as the experiment type in
the header. Results should match Figure 7: Column 4,
Figure 30, Figure 33: Column 3-4, Figure 34: Column
8-9.

(E3-mini): SAFA + nlookup mini Baseline [40 human-
minutes + 4 compute-hours + 1.5GB disk]
Execution: ./tests/scripts/safa_nlookup-mini.sh
Results: See (E1-mini). Due to their long execution
time safa_nlookup-mini excludes the DNA applica-
tions and only runs the ODOH, email, and password ap-
plications. Results should be consistent with the ODOH,
Redactions, and Password rows of: Figure 7: Column
4, Figure 30, Figure 33: Column 3-4, Figure 34: Column
8-9.

(E4): Reef Evaluation [1 human-hour + 8 compute-hours +
9GB disk]
Execution: ./tests/scripts/reef.sh
Results: See (E1). Relevant memory files are suffixed
_reef. Reef evaluation experiments have reef as the
experiment type in the header. Results should match
Figure 5, Figure 6, Figure 7: Column 5, Figure 29, Figure
33: Column 3-4, Figure 34: Column 10-11.



(E4-mini): Reef mini Baseline [1 human-hour + 8 compute-
hours + 6GB disk]
Execution: ./tests/scripts/reef-mini.sh
Results: See (E1-mini). Results should be consistent
with: Figure 5, Figure 6, Figure 7: Column 5, Figure 29,
Figure 33: Column 3-4, Figure 34: Column 10-11.

A.5 Notes on Reusability
Reef can be build very easily without the Docker im-
age and used for applications outside of the ones used in
our experiments. Instructions are in the README of the
repo: https://github.com/eniac/Reef. The only depen-
dency is rust/cargo: https://www.rust-lang.org/tools/
install.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

References
[1] Regex filters for pi-hole. https:

//github.com/mmotti/pihole-regex/blob/master/regex.list.

[2] https://nordpass.com/most-common-passwords-list/, 2023.

[3] https://www.cs.cmu.edu/~enron/, 2023.

[4] https://www.ncbi.nlm.nih.gov/gene/672, 2023.

[5] https://www.ncbi.nlm.nih.gov/gene/675, 2023.

[6] S. Angel, E. Ioannidis, E. Margolin, S. Setty, and J. Woods. Reef: Fast
succinct non-interactive zero-knowledge regex proofs. Cryptology
ePrint Archive, Paper 2023/1886, 2023.
https://eprint.iacr.org/2023/1886.

https://github.com/eniac/Reef
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://secartifacts.github.io/usenixsec2024/
https://github.com/mmotti/pihole-regex/blob/master/regex.list
https://github.com/mmotti/pihole-regex/blob/master/regex.list
https://nordpass.com/most-common-passwords-list/
https://www.cs.cmu.edu/~enron/
https://www.ncbi.nlm.nih.gov/gene/672
https://www.ncbi.nlm.nih.gov/gene/675
https://eprint.iacr.org/2023/1886

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


