
USENIX Security ’24 Artifact Appendix: d-DSE: Distinct Dynamic
Searchable Encryption Resisting Volume Leakage in Encrypted Databases

Dongli Liu1, Wei Wang1,�, Peng Xu2,3,4,�, Laurence T. Yang1,5, Bo Luo6, and Kaitai Liang7

1Huazhong University of Science and Technology
2Hubei Key Laboratory of Distributed System Security, School of Cyber Science and Engineering,

Huazhong University of Science and Technology
3JinYinHu Laboratory

4State Key Laboratory of Cryptology
5St. Francis Xavier University

6The University of Kansas
7Delft University of Technology

�Corresponding authors: {viviawangwei, xupeng}@hust.edu.cn

A Artifact Appendix

A.1 Abstract

Dynamic Searchable Encryption (DSE) has emerged as a so-
lution to efficiently handle and protect large-scale data storage
in encrypted databases (EDBs). Volume leakage poses a sig-
nificant threat, as it enables adversaries to reconstruct search
queries and potentially compromise the security and privacy
of data. Padding strategies are common countermeasures for
the leakage, but they significantly increase storage and com-
munication costs. In this work, we develop a new perspective
on handling volume leakage. We start with distinct search and
further explore a new concept called distinct DSE (d-DSE).

For applying the ‘Artifacts Available’ badge of d-DSE, we
release our test code on GitHub. The artifact appendix in-
cludes all necessary information to access and establish our
artifacts via GitHub resource. Since our proposal sharply re-
duces the communication cost as compared to padding strate-
gies on the top of DSE, we would like to apply the ‘Functional’
badge for our main test: the comparison of the total search
time and communication costs of BF-SRE, AURAP, and MI-
TRAP without deletion. During the functional test, we can
see that the communication cost of BF-SRE has 14.92x and
30.41x advantage over AURAP and MITRAP on the Crime
dataset, which is aligned with our conclusion about the com-
munication advantages overall schemes.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our experiment does not have risks for evaluators while ex-
ecuting artifact to their machines security, data privacy or
others ethical concerns. The test data is public available, and
the aspects of test are not related to the system vulnerability.

A.2.2 How to access

Our artifact stable URL is:

https://github.com/jd89j12dsa/ddse/tree/AEversion

Codes are available in GitHub via the command:
$git clone https://github.com/jd89j12dsa/ddse.git

$git checkout AEversion

The command can get our code in the Ubuntu system, and
the underling README.md can guide evaluators establish
the experiment.

Quick Setup. We would like to thank reviewers for quick
setup via Docker (version 18.09.7) on Ubuntu Server 16.04
x64. In the ‘ddse’ folder, the following command can build
the docker container to test our codes:

$cd ./ddse/dockerfile
$sudo docker build -t test ./
$sudo docker run -name testddse -p 80:80 -it test
(in docker container)
root@2882cbe0c7a4:/ddse$ nohup mongod &

After establishment, we can follow instructions from Sec-
tion A.3.2 and A.4 to test experiments. For manual installation,

we can follow instructions from Section A.3 and check hard-
ware/software dependencies from Section A.2.3 and A.2.4.

A.2.3 Hardware dependencies

The artifact does not require specific hardware features. Most
computers can download code from the GitHub and run it at
local. We strongly recommend 128GB memory due to the
large space requirements of padding strategies compared to
d-DSE. The hardware dependencies can be established based
on what we used: Intel® Xeon Gold 5120 CPU @ 2.20GHz,
128GB, and Dell RERC H730 Adp SCSI Disk Device.

A.2.4 Software dependencies

We require the following software on Ubuntu Server 16.04
x64 before all experiments.

• Python v3.6.3 (corresponded with pip3.6)

• MySQL v14.14 Distribute 5.7.33

• MongoDB v2.6.10

• g++-7 (7.5.0)

• cmake 3.17

• openssl 1.0.2

• Apache Thrift 0.13.0

The Python v3.6.3, pip3.6, openssldev, cmake 3.17, and
Apache Thrift 0.13.0 should be installed manually, using the
following instruction:

#install Python v3.6.3
$wget https://www.python.org/ftp/python/

3.6.3/Python-3.6.3.tar.xz
$tar -xvf Python-3.6.3.tar.xz
$cd Python-3.6.3
$./configure
$make -j
$make install
$ln -s /usr/local/bin/python3.6

/usr/local/bin/python

#install pip3.6
$wget https://bootstrap.pypa.io/pip/3.6/get-pip.py
$python3.6 get-pip.py
$ln -s /usr/local/bin/pip3.6 /usr/local/bin/pip

#install the openssldev libraries:
$sudo apt-get install libssl-dev

#install Cmake 3.17
$wget https://github.com/Kitware/CMake/

releases/download/v3.17.0-rc3/cmake-3.17.0-rc3.tar.gz
$tar -xvf cmake-3.17.0-rc3.tar.gz
$cd cmake-3.17.0-rc3
$./bootstrap
$make -j

$make install

#install Apache Thrift 0.13.0
$wget https://archive.apache.org/

dist/thrift/0.13.0/thrift-0.13.0.tar.gz
$tar -xvzf thrift-0.13.0.tar.gz
$cd thrift-0.13.0
$./configure
$make -j
$make install

A.2.5 Benchmarks

In the ‘DB_gen’ folder of our GitHub codes, we provide the
Crimes, Wikipedia, and Enron datasets dumped from Mon-
goDB during our experiments.

The following code cand restore dumped dataset in Mon-
goDB:

$cd ./DB_Gen
$mongorestore -db Crime_USENIX_REV

./Crime_USENIX_REV
$mongorestore -db Enron_USENIX ./Enron_USENIX
$mongorestore -db Wiki_USENIX ./Wiki_USENIX

$cd ../

A.3 Set-up
A.3.1 Installation

Followed the GitHub code, we summarize the setup for BF-
SRE, MITRAP, AURAP, SEAL, and ShieldDB in our experi-
ment.

BF-SRE: After locating the ‘BF-SRE’ folder, install the
python-C models for BF-SRE with pathos package:

$sudo python3.6 setup_DDSE2.py install
$sudo python3.6 setup_Diana.py install
$cd ./SRE
$sudo python3.6 cSRE_setup.py install
$cd ..
$pip3.6 install -trusted-host pypi.org

-trusted-host pypi.python.org -trusted-host
files.pythonhosted.org pathos

MITRAP: After locating the ‘Compare_MITRAp’ folder,
install the python-C models:

$sudo python3.6 setup_MITRAPP.py install

$sudo python3.6 setup_DianaM.py install

AURAP: After locating the ‘Compare_AURAp’ folder,
build the C program from Aura:

$cd ./build
$cmake ..
$make

SEAL: After locating the ‘Compare_Seal’ folder, the third
party (Boost) from CCS18 should be installed first for the
path-ORAM, specifically:

$wget https://archives.boost.io/release/
1.64.0/source/boost_1_64_0.tar.gz

$tar -xzvf boost_1_64_0.tar.gz
$cd boost_1_64_0/
$./bootstrap.sh -prefix=/usr/local

$./b2
$sudo ./b2 install

$cd ..

Next, we build the python-C models:
$sudo python3.6 setup_OMAP.py install
$sudo python3.6 setup_ORAM.py install

ShieldDB: After locating the ‘Compare_ShieldDB’ folder,
we should first install the ShieldDB with its related depen-
dency (RocksDB v6.22.1 and gflags v2.2.2):

$git clone https://github.com/MonashCyber
securityLab/ShieldDB.git

$apt-get install build-essential libsnappy-dev
zlib1g-dev libbz2-dev libgflags-dev liblz4-dev

$git clone https://github.com/facebook/rocksdb.git
$cd rocksdb
$git checkout v6.22.1
$mkdir build && cd build
$cmake ..
$make
$cd ..
$export CPLUS_INCLUDE_PATH= ${CPLUS_INCLUDE_PATH}

${CPLUS_INCLUDE_PATH:+:}‘pwd‘include
$export LD_LIBRARY_PATH= ${LD_LIBRARY_PATH}

${LD_LIBRARY_PATH:+:}‘pwd‘/build/
$export LIBRARY_PATH=${LIBRARY_PATH}

${LIBRARY_PATH:+:}‘pwd‘/build/
$apt-get install python-virtualenv python-dev
$virtualenv pyrocks_test
$cd pyrocks_test
$../bin/active
$ pip3.6 install -trusted-host pypi.org

-trusted-host pypi.python.org -trusted-host
files.pythonhosted.org Cython==0.29.35

$pip3.6 install -trusted-host pypi.org
-trusted-host pypi.python.org -trusted-host
files.pythonhosted.org python-rocksdb==0.7.0

$ cd ..

After install ShieldDB, we should move the setting program
into the ‘ShiledDB’ folder:

$mv ./ShieldDB_Supporter.py ./ShieldDB/
$mv ./Gen.sh ./ShieldDB/
$cd ./ShieldDB/
$mkdir ./Var/

A.3.2 Basic Test

In our d-DSE program, we provide a tiny dataset
‘Crime_USENIX_REV_Toy’ to check our test codes run cor-
rectly. The dataset should reload into MongoDB at first:

$cd ./DB_Gen
$mongorestore -db Crime_USENIX_REV_TOY

./Crime_USENIX_REV_TOY

$cd ../

In the ‘BF-SRE’, ‘Compare_MITRAp’, and ‘Com-
pare_Seal’ folder, we provide the shell code ‘check.sh’ to
check the correctness of BF-SRE, MITRAP, AURAP, and SEAL,

respectively. For ShieldDB, we use their GitHub example pro-
gram to check potential bugs.

To run the shell code, we use:
$ sh check.sh

For AURAP, the shell code is located at ‘Compare_AURAp
/build’ folder. We first use the python code in ‘dataset’ folder
to translate the document data into the input of AURAP pro-
gram:

$cd dataset
$python3.6 Aura_plan.py Crime_USENIX_REV_TOY
$cd ..

$sh ./check.sh

At the end of the check programs, they will create a ‘result’
folder in the same folder as the shell code.

The result file is a text document including each time and
communication cost related to the keyword. The main fields
of the document include:
Keyword: the keyword name (e.g., F180) that we count

their ;
Total_search: the time cost for the keyword search on

encrypted data;
result_len: the number of returned entries (e.g, 256 for

the padding of x = 4 factor);
comm_size: the bytes of the returned search result.

A.4 Evaluation workflow

A.4.1 Major Claims

Since our main contribution is the lower communication cost
compared with padding strategies on the top of DSE, we claim
the main result in our evaluation:
(C1) : d-DSE achieves the less time cost than the MITRAP

and AURAP while saving at least 6.36x communication
costs. This is proven by the experiment (E1) described
in Section 6.3.1 para1 whose results are illustrated in Fig
4.

A.4.2 Experiments

(E1): [360 human-minutes + 1 compute-hour + 5GB disk +
32GB RAM]: The experiment tests the search time and
communication cost of BF-SRE, MITRAP, and AURAP

on the Crime dataset.
How to: We can process the ‘test.sh’ shell code in the
folders for BF-SRE, MITRAP, and AURAP to compare
their ‘comm_len’ result. As expected, the communica-
tion cost of BF-SRE in searching for keywords with the
largest Keyword Volume will be at least 6.36 times lower
than that of MITRAP and AURAP.

Preparation: The process environment is same as the
Basic Test.

Execution: The execution code for BF-SRE and MI-
TRAP, is:
$ sh test.sh

where the shell code is in ‘BF-SRE’ and ‘Com-
pare_MITRAp’ folder, respectively.
For AURAP, the shell code is located at ‘Com-
pare_AURAp/build’ folder. We use the ‘Aura_plan.py’
in ‘dataset’ folder to generate the input of AURAP pro-
gram:
$cd dataset
$python3.6 Aura_plan.py Crime_USENIX_REV
$cd ..

$sh ./test.sh

Results: As a result, BF-SRE will writes each keyword
search result in the text file located at:
BF-SRE/Result/Search/BF-SRE/0/Crime_USENIX_REV

/d0/24021101.
MITRAP writes at:
Compare_MITRAp/Result/Search/MITRAPP/Crime_
USENIX_REV/d0/240206.
AURAP writes at:
Compare_AURAp/build/result

The keyword search results are output in descending
order according to their Keyword Volume. Base on the
bytes returned on keyword ‘F730’, the length of BF-SRE
are nearly 85.75KB with 14.92x and 30.41x advantage
over AURAP and MITRAP, which aligns our summary on
the communication reduce.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

