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A Artifact Appendix

This artifact appendix is meant to be a self-contained docu-
ment that describes a roadmap for evaluating our artifact. It
should include a

A.1 Abstract

In this work, we aim to address the issue of illicit image-based
promotions of unsafe user generated content games (UGCGs)
on social media. In our study, we collect a real-world dataset
comprising 2,924 images that display diverse sexually ex-
plicit and violent content used to promote UGCGs by their
game creators. We additionally create a cutting-edge sys-
tem, UGCG-Guard, designed to aid social media platforms
in effectively identifying images used for illicit UGCG promo-
tions. This system leverages recently introduced large vision-
language models (VLMs) and employs a novel conditional
prompting strategy for zero-shot domain adaptation, along
with chain-of-thought (CoT) reasoning for contextual identi-
fication. UGCG-Guardachieves outstanding results, with an
accuracy rate of 94% in detecting these images used for the
illicit promotion of such games in real-world scenarios.

A.2 Description & Requirements

We have prepared a CSV file that stores the image path of
each UGCG image and its annotation label. Meanwhile, we
prepared Python 3 scripts to reproduce the results of UGCG-
Guard. The evaluator should have a Python 3 environment
ready to run the prepared scripts.

A.2.1 Security, privacy, and ethical concerns

Our artifact contains an unsafe image dataset of inappropriate
content, such as sexually explicit and violent images from
Roblox games. Please avoid viewing the images directly if
you are not comfortable with them.

A.2.2 How to access

The artifact can be accessed via the GitHub link: https:
//github.com/UBSec/UGCG-Guard/tree/1072d5c51a0e
7bae2290da08e957e5b1d86cd7b6.

A.2.3 Hardware dependencies

UGCG-Guard is a framework for integrating large VLMs to
detect insecure UGCG images. Our framework can utilize
both open-source and closed large VLMs. In this work, we
have prepared two scripts to ensure evaluators can success-
fully run UGCG-Guard with different environments.

The open-source large LVLM-based UGCG-Guard re-
quires a runtime environment with over 50 GB of total GPU
memory.

The closed LVLM-based UGCG-Guard requires only API
requests and has no hardware dependencies.

A.2.4 Software dependencies

None.

A.2.5 Benchmarks

None.

A.3 Set-up
The Python 3 environment is necessary for our artifacts. In ad-
dition, please make sure that “base64”, “requests”, and “pan-
das” are installed in your Python 3 environment.

A.3.1 Installation

For open-source large LVLM-based UGCG-Guard, we have
prepared the “requirements.txt”. Run the following code in
your Python environment to install the necessary dependen-
cies.

pip install -r requirements.txt

https://github.com/UBSec/UGCG-Guard/tree/1072d5c51a0e7bae2290da08e957e5b1d86cd7b6
https://github.com/UBSec/UGCG-Guard/tree/1072d5c51a0e7bae2290da08e957e5b1d86cd7b6
https://github.com/UBSec/UGCG-Guard/tree/1072d5c51a0e7bae2290da08e957e5b1d86cd7b6


For the closed large UGCG-Guard based on LVLM, make
sure you have the OpenAI Python library. If not, you can
install it using the following code.

pip install --upgrade openai

A.3.2 Basic Test

The evaluators can run scripts directly for artifact evaluation.
They will output an error message if any dependencies are
missing.

A.4 Evaluation workflow
A.4.1 Closed large LVLM-based UGCG-Guard

1. Open the script “gpt.py“ and insert your OpenAI API
key by changing the code in line 11:

api_key = "YOUR_API_KEY"

2. Run “gpt.py“, and the results will be stored in a new CSV
file named “ugcg_gpt.csv”. Testing the whole dataset
will cost around 10 dollars. You can randomly select a
subset with a number of images to test by adding a line
of code under line 14, such as:

df = df.sample(1000)

3. After the “ugcg_gpt.csv“ result file is generated, you
can run “view_result.py“ to calculate and output the
accuracy, precision, recall, and F1-score.

A.4.2 Open-source large LVLM-based UGCG-Guard

1. Run “requirements.txt“ to set up your Python environ-
ment.

2. The model we used in this artifact is InstructBLIP from
HuggingFace. Note that you may modify the code below
to distribute the running task properly to different GPUs.

device_map = infer_auto_device_map(
model, max_memory={0: "28GiB", 1: "
28GiB"},no_split_module_classes=[’
InstructBlipVisionModel’, ’
InstructBlipQFormerModel’, ’
LlamaDecoderLayer’])

3. Run the script “blip.py”. The results will be automati-
cally stored in “ugcg_blip.csv”.

4. Open “ugcg_blip.csv” and look into the column
“blip_output”, if any of the answers for Q2-Q7 is “Yes”,
the label should be “unsafe”.

5. Compare the predictions with the ground truth in the
“label” column. “1” indicts unsafe images and “0” indicts
safe images.

A.4.3 Major Claims

(C1): UGCG-Guard achieves a satisfactory performance for
detecting unsafe UGCG images. This is proven by the
experiment described in Section 6.3 in our paper, whose
results are reported in Table 2.

A.4.4 Experiments

Either of the following experiments can be implemented to
reproduce our results.
(E1): Closed large LVLM-based UGCG-Guard [20 human-

minutes + 1.5 compute-hour + 280 MB disk]:
Preparation: Please set up your Python 3 environment
and ensure the required dependencies are installed. Pre-
pare an OpenAI API key to send requests that use GPT
models.
Execution: Run the “gpt.py” file in the Python 3 envi-
ronment and wait patiently for the CSV file to be gener-
ated.
Results: The results are automatically calculated
and printed to the terminal. After you execute the

“view_result.py” file. The expected output should be
around 94% accurate.

(E2): Open-source large LVLM-based UGCG-Guard [1.5
human-hour + 2 compute-hour + 3 GB disk]:

Preparation: Please set up your Python 3 environment and
make sure you have the required dependencies installed.
The experiment requires a sufficient GPU, otherwise the
execution will fail due to lack of memory.

Execution: Run the “blip.py” file in the Python 3 environ-
ment and wait patiently for the CSV file to be generated.

Results: Open “ugcg_blip.csv” with tools such as Microsoft
Excel and observe the output stored in the “blip_output”
column. If any of the answers for Q2-Q7 is “Yes”, please
mark the predicted label as “1”. Otherwise, label it as “0”.
Compare the predicted label with the records in the “la-
bel” column. Calculate the accuracy with the following
equation:

accuracy =
The number of correct predictions
The number of total predictions

The expected output should be around 94% accurate.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/
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