ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *24 Artifact Appendix: Understanding Ethereum
Mempool Security under Asymmetric DoS by Symbolized Stateful

Fuzzing
Yibo Wang Yuzhe Tang Kai Li Wanning Ding
Syracuse University Syracuse University San Diego State University Syracuse University
ywang349 @syr.edu ytang100@syr.edu kli5@sdsu.edu wding04 @syr.edu
Zhihua Yang
Syracuse University
zyang47 @syr.edu

A Artifact Appendix

A.1 Abstract

This artifact presents the design and implementation of
MPFUZZ, a symbolized-stateful mempool fuzzer that auto-
matically identifies asymmetric DoS vulnerabilities in an
Ethereum mempool. MPFUZZ defines the search space using
mempool states covered by symbolized transaction sequences.
It efficiently explores this space by utilizing feedback from
symbolized state coverage and evaluating the potential of
intermediate states to trigger bug oracles. The artifact demon-
strates that MPFUZZ discovers new asymmetric DoS vulner-
abilities in the Ethereum client and shows the process for
identifying these vulnerabilities.

A.2 Description & Requirements

The artifact is a symbolized-stateful Ethereum mempool
fuzzer designed to automatically identify asymmetric DoS
vulnerabilities. MPFUZZ operates on a reduced version of the
mempool under test (MUT) deployed locally. The fuzzing pro-
cess facilitated by MPFUZZ uncovers short exploit sequences
that can subsequently be developed into comprehensive, ac-
tionable exploits.

The artifact includes a modified Go-Ethereum client based
on Geth v1.10.11, a prototype of MPFUZZ implemented in
Python, and associated dependencies. The source code of the
modified Go-Ethereum client is provided in our artifact and
can be built from source. The MPFUZZ prototype necessitates
Python 3.9 and several Python libraries, specifically web3,
numpy, pandas, and graphviz.

A.2.1 Security, privacy, and ethical concerns

Our artifact contains many pre-generated public-private key
pairs. It is imperative that these keys are not used on real

networks to avoid potential financial loss. Utilizing these keys
in a live environment poses significant security risks, as they
may be easily compromised. Evaluators must ensure that
these keys are restricted to controlled, test environments.

A.2.2 How to access

To access our artifact, please use a web browser to navi-
gate to the following URL: https://doi.org/10.6084/
m9.figshare.26068909.v6. Download all the files avail-
able in the root folder. After downloading all the files from
the Figshare project, unzip the key_new.zip file and ensure
that the unzipped folder retains the same name, . /key_new/.

A.2.3 Hardware dependencies

To evaluate our artifact, no specific CPU hardware is required.
While our artifact does not have a minimum requirements for
memory and storage, higher capacities are advantageous for
improving overall performance.

A.2.4 Software dependencies

To properly evaluate our artifact, specific operating system
and software packages are required. Our artifact is designed
to operate on Unix-like operating systems, such as Ubuntu.
Additionally, Python version 3.9 or later must be installed,
serving as the foundational environment for our artifact’s
execution. A few Python libraries are essential to its operation
include web3, numpy, pandas, and graphviz.

A.2.5 Benchmarks

None

https://doi.org/10.6084/m9.figshare.26068909.v6
https://doi.org/10.6084/m9.figshare.26068909.v6

A.3 Set-up

In this section, we provide instructions for setting up the
environment and running our artifact for evaluation purposes.
After downloading all the files from the Figshare project and
unzipping key_new. zip, it is essential to build the modified
Go-Ethereum client from source. To do so, it requries first
unzip the go-ethereum-1.10.11.zip, keep the unzipped folder
with the same name as ./go-ethereum-1.10.11/. Then, build
the author-modified version of Go-Ethereum client via the
following command:

$ make -C go-ethereum-1.10.11
$ cp go-ethereum-1.10.11/build/bin/geth ./geth

Next, make the start Ethereum script executable via the
following command:

$ chmod +x ./start_ethereum.sh
$ chmod +x ./start_ethereum_e2a.sh

$ chmod +x ./start_ethereum_e2b.sh

A.3.1 Installation

To run our MPFUZZ prototype implemented in Python, it is
essential to first install Python 3.9 by following the installation

instructions provided on the Python website: https://www.

python.org/downloads/.
Next, install the required Python libraries using the pip
command:

$ pip3 install web3 numpy pandas graphviz

This command installs the necessary dependencies, namely
web3 for Ethereum interaction, numpy for numerical compu-
tations, pandas for data manipulation, and graphviz for graph
visualization tasks.

A.3.2 Basic Test

‘We conduct two tests: first, to ensure the Ethereum client is
operational, and second, to verify the readiness of the envi-
ronment for running the MPFUZZ Python prototype.

To test the Ethereum client, execute the following command
in the current directory to start the client:

$./start_ethereum.sh

If the command launches a Geth JavaScript console without
errors, the Ethereum client is successfully initialized.

To test the Python environment, execute the following com-
mand in the current directory to run our Python script. Ensure
not to terminate the Geth JavaScript console opened in the
previous step:

$ python3 ./mpfuzz.py

If the script begins printing out fuzzing logs instead of
returning an error, it indicates that the environment is correctly
configured and ready for running the MPFUZZ prototype.

A.4 Evaluation workflow

In this section, we describe the procedures for running our
artifact and reproducing the experimental results to validate
the claims made in our original paper.

A.4.1 Major Claims

The experimental results obtained from running our artifact
validate three major claims presented in our original paper, as
listed below:

(C1): MPFUZZ discovers new asymmetric-DoS vulnerabili-
ties. This is proven by the experiment (E1) described in
§ A.4.2 whose results are reported in our original paper
Section 6.1.

(C2): MPFUZZ explores mempool states using symbolized
transaction sequences and efficiently searches with feed-
back from state coverage and intermediate state promis-
ingness. This is proven by the experiment (E1) described
in § A.4.2. The experiment result illustrates how MP-
FUZZ finds exploits that are described in our original
paper Section 5 and Appendix B.

(C3): MPFUZZ can find the first exploit, namely X73, on a
small MUT (6 slots) in 0.03 minutes. For the medium
setting, with 16 slots, MPFUZZ can find X 73 exploit in
under a minute. This is proven by the experiment (E2)
described in § A.4.2 whose results are reported in our
original paper Section 7.1.

A4.2 Experiments

This subsection describe how to reproduce the experimental
result that valid the Major Claims C1, C2 and C3 provided in
the previous subsection. Specifically, experiment E1 validates
Major Claims C1 and C2, while Major Claim C3 is validated
in experiments E2.

(E1): Stateful Mempool Fuzzing by MPFUZZ [15 seconds
compute-time]: In this experiment, we run MPFUZZ
against a small-size Ethereum mempool to find short
exploits on this mempool under test. The experimental
results report all the exploits discovered by MPFUZZ and
illustrate the process that MPFUZZ searches the transac-
tion space and identifies exploits.

Preparation: First, access our artifact by following the
steps described in Section A.2.2. Then, set up the envi-
ronment by configuring and installing the dependencies
as described in § A.3 and § A.3.1.

Execution: First, start the Ethereum client by running
the following command in the current directory.

In terminal 1

https://www.python.org/downloads/
https://www.python.org/downloads/

$./start_ethereum.sh

After the command launches a Geth JavaScript console,
running the following command in a new terminal to run
the MPFUZZ.

In terminal 2

$ python3 ./mpfuzz.py

Results: After the Python script terminates, a PDF file
is generated that reports the experimental results. In the
PDF, nodes highlighted in yellow represent the end states
of exploits, indicating that these states trigger the bug
oracle. The path from the root node to the leaf node that
triggers the bug oracle illustrates the exploit transaction
sequence. The concrete exploit transaction sequence is
also output in the Python console, allowing users to re-
produce the attacks. Additionally, the tree structure in
the PDF file shows the process that MPFUZZ explores
the search space.

(E2): MPFUZzz performance evaluation of detecting the first

exploit [1 minute compute-time]: In this experiment, we
run MPFUZZ against a small-setting MUT (6 slots) and a
medium-setting MUT (16 slots) to find the X 73 exploit
for evaluating the performance. The experimental results
report the time used by MPFUZZ to find the X T3 exploit
and the concrete exploit transaction sequence.
Preparation: First, access our artifact by following the
steps described in Section A.2.2. Then, set up the envi-
ronment by configuring and installing the dependencies
as described in § A.3 and § A.3.1.

Execution E2a: In experiment E2a, we evaluate the per-
formance of MPFUZZ for finding exploit against 6-slot
mempool. First, start the Ethereum client by running the
following command in terminal 1.

In terminal 1

$./start_ethereum e2a.sh

After the command launches a Geth JavaScript console,
running the following command in terminal 2 to run the
MPFUZZ.

In terminal 2

Spython3 mpfuzz_e2a.py

Execution E2b: In experiment E2b, we evaluate the
performance of MPFUZZ for finding exploit against 16-
slot mempool. First, start the Ethereum client by running
the following command in terminal 1.

In terminal 1

$./start_ethereum_e2b.sh

After the command launches a Geth JavaScript console,
running the following command in terminal 2 to run the
MPFUZZ.

In terminal 2

Spython3 mpfuzz_e2b.py

Results: After the Python script terminates, the concrete
exploit transaction sequence of the XT3 exploit found
is output in the Python console as well as the time used
to find it. MPFUZZ can find the XT3 exploit against a
6-slot MUT in 0.03 minutes and a 16-slot MUT in under
a minute.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

