ARTIFACT ARTIFACT
EVALUATED EVALUATED

yusenix yusenix

ASSOCIATION @ Association

AVAILABLE

USENIX Security '24 Artifact Appendix: Query Recovery from Easy to
Hard: Jigsaw Attack against SSE

Hao Nie', Wei Wang!'™, Peng Xu!>3*™ Xijanglong Zhang!, Laurence T. Yang!-, and Kaitai Liang®

'Huazhong University of Science and Technology
2Hubei Key Laboratory of Distributed System Security, School of Cyber Science and Engineering
3JinYinHu Laboratory
4State Key Laboratory of Cryptology
58t. Francis Xavier University
SDelft University of Technology

¥ Corresponding authors: viviawangwei@ hust.edu.cn, xupeng @ hust.edu.cn

A Artifact Appendix

A.1 Abstract

Searchable symmetric encryption (SSE) schemes often unin-
tentionally disclose certain sensitive information. Attackers
can exploit such leakages and other available knowledge re-
lated to the user’s database to recover queries. We find that the
effectiveness of query recovery attacks depends on the vol-
ume/frequency distribution of keywords. Queries containing
keywords with high volumes/frequencies are more suscepti-
ble to recovery, even when countermeasures are implemented.
Attackers can also effectively leverage these “special” queries
to recover all others. By exploiting the above finding, we pro-
pose a Jigsaw attack that begins by accurately identifying and
recovering those distinctive queries. Leveraging the volume,
frequency, and co-occurrence information, our attack achieves
90% accuracy in three tested datasets.

The results consist of three aspects: 1) Evaluations of Jig-
saw (Section 5 and Appendix B and C). These evaluations
show that the idea of recovery from easy to hard in Jigsaw
is viable and Jigsaw can successfully recover the queries by
utilizing the leakage of SSE. 2) Comparisons with other at-
tacks (Section 6 and Appendix D). These comparisons show
that Jigsaw provides > 90% accuracy surpassing the Graphm
and SAP attacks, similar to the RSA and THOP. Jigsaw also
has other superior aspects to IHOP and RSA. 3) Comparisons
with other attacks when against countermeasures (Section
7 and Appendix E, F, and G). Jigsaw maintains high accu-
racy against the padding (in most cases) and obfuscation and
takes the lead in accuracy in most cases. We provide all of
the scripts to reproduce the experimental results of the paper
along with the datasets.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None. Our experiment does not have risks for evaluators while
executing artifacts. The test datasets are publicly available,
and the attacks just use the simulated leakage generated by
the publicly available datasets.

A.2.2 How to access

Codes are available in GitHub by link: https:
//github.com/JigsawAttack/JigsawAttack/tree/
AEStableVersion2.

A.2.3 Hardware dependencies

The artifacts do not require special hardware. Machines that
can run Python code can run the artifacts. However, to run the
experiments related to the Wikipedia dataset, large memory
like 64GB is suggested. We use Python 3.95 to simulate and
run codes in Ubuntu 22.04.1 with 16 cores of an Intel(R)
Xeon(R) Gold 5120 CPU (2.20GHz) and 64 GB RAM.

A.2.4 Software dependencies

The artifacts require the following software or packages:
» Python v3.9 or above.
 Packages of Python: numpy, matplotlib, tqdm, and scipy.

To test the Graphm attack, other packages are needed to
execute the Graphm attack. We use the PATH algorithm
from the GraphM package (https://projects.cbio.
mines-paristech.fr/graphm/) to implement the Graphm
attack.

https://github.com/JigsawAttack/JigsawAttack/tree/AEStableVersion2
https://github.com/JigsawAttack/JigsawAttack/tree/AEStableVersion2
https://github.com/JigsawAttack/JigsawAttack/tree/AEStableVersion2
https://projects.cbio.mines-paristech.fr/graphm/
https://projects.cbio.mines-paristech.fr/graphm/

A.2.5 Benchmarks

We use the Enron, Lucene, and Wikipedia datasets to
test the attacks. The Enron and Lucene datasets are
included in the repository and the Wikipedia dataset
can be downloaded in https://drive.google.
com/file/d/11tB3oyiDVOEf7v0dRBIXV _
wwvBUwas05/view?usp=drive_1link and
https://drive.google.com/file/d/18
RG5GiH65IAI64HESEm7yC7hbIkfBSG/view?
usp=drive_link or in Zenodo with https:
//zenodo.org/records/12683869. To produce the
result in Wikipedia when keyword universe size < 3,000, run
the “preprocess.py” first, and when keyword universe size
= 5,000, run the “preprocess.py” with line 7 changing to
“kws_universe_size = 5000”. The “preprocess.py” may take
hours to finish.

A.3 Set-up
A.3.1 Installation

Installing python and the packages listed above is enough
to run all attacks except for the Graphm attack in our pa-
per. To run the Graphm attack, please follow the instruc-
tions in https://projects.cbio.mines-paristech.fr/
graphm/.

A.3.2 Basic Test

Run the “run_single_attack.py” to simulate a single at-
tack. Using “python run_single_attack.py attack=Jigsaw
dataset=enron kws_universe_size=500" to simulate a sin-
gle attack of Jigsaw. Replace “Jigsaw” with “THOP”, “RSA”,
“SAP”, or “Graphm” to test other attacks. Replace “enron”
with “lucene” or “wiki” to test other datasets. Also the
“kws_universe_size” can be set to other values.

This will output the accuracy of the tested attack and its
runtime.

A.4 Evaluation workflow
A.4.1 Major Claims

Our major claims are:

(C1.1): The distribution of queries in tested datasets has the
distribution of frequency and volume like Figure 1 in
Section 4.1 and Figures 11 and 12 in Appendix B.

(C1.2) Module 1 of Jigsaw shows that high-frequency or
high-volume queries are easier to recover (Module 1 has
higher accuracy). The results are shown in Figures 2 and
3 in Section 5.2. Module 1 and 2 of the Jigsaw attack can
have a high attack accuracy when recovering a part of
queries. The experiment results are illustrated in Table 2
in Section 5.2.

(C1.3) Jigsaw can have high accuracy with/without fre-
quency information (in Figure 4 Section 5.3). The Jigsaw
remains stable when the observation time is long from
the auxiliary information (in Table 3, Section 5.3).

(C2.1) Jigsaw has similar accuracy compared to RSA and
IHOP and has higher accuracy than SAP and Graphm
(in Figure 5, Section 6.2).

(C2.2) Jigsaw has higher accuracy comparisons with IHOP
within similar runtime (in Figure 6 Section 6.2).

(C3) Jigsaw takes lead in accuracy in most cases when
against countermeasures (Padding in CGPR, Obfusca-
tion in CLRZ, Padding in SEAL, and the Cluster-based
padding), especially in the Wikipedia dataset. Results
are shown in Figures 7,8,9, and 10 in Sections 7.1 and
7.2 (and in Figures 16, 17, 18, and 19 in Appendix F).

A.4.2 Experiments

Preparation: [2 human-minutes][2 computer-minutes

+ 0.5GB disk]: Download or clone the repository

in https://github.com/JigsawAttack/JigsawAttack/

tree/AEStableVersion.

Preparation for tests on Wikipedia: [2 human-minutes][200

computer-minutes + 10GB disk]: Download the dataset

of Wikipedia in https://drive.google.com/file/
d/11tB3oyiDVOEf7v0dRB1XV_wwvBUwas(05/view?usp=

drive_link and https://drive.google.com/file/
d/18_RG5GiH65IAI64HESEM7yCThbIkfBSG/view?usp=

drive_link and put them in fold “dataset”. To produce the
result in Wikipedia when keyword universe size < 3,000, run
the “preprocess.py” first, and when keyword universe size
= 5,000, run the “preprocess.py”’ with line 7 changing to

“kws_universe_size = 5000”. The “preprocess.py” may take

hours to finish. If this is not executed, the results on Enron

and Lucene can still be produced.

Preparation for tests of Graphm: [30 human-minutes][10

computer-minutes + 0.1GB disk]: Following the instruc-

tions in https://projects.cbio.mines-paristech.fr/
graphm/ to install the package of graph match algorithms.

The codes in this link may contain bugs in some machines

as many packages it relies on are outdated. We note that the

Graphm attack is the only attack that is relevant to this pack-

age and the results of the Graphm attack do not affect the

major claims.

(E1.1): [5 human-minutes][10 computer-minutes]: The ex-
periment shows the distribution of quires and whether
they are recovered by the simple attack.

Preparation: Create an empty fold named “results” un-
der the main fold.

Execution: Run “show_distribution.py” with python.
Results: It will output six pictures saved at ““./results”
as Figure 1 in Section 4.1 and Figures 11 and 12 in
Appendix B. It will also output the recovery accuracy in
each quadrant.

https://drive.google.com/file/d/1ltB3oyiDV0Ef7v0dRBlXV_wwvBUwas05/view?usp=drive_link
https://drive.google.com/file/d/1ltB3oyiDV0Ef7v0dRBlXV_wwvBUwas05/view?usp=drive_link
https://drive.google.com/file/d/1ltB3oyiDV0Ef7v0dRBlXV_wwvBUwas05/view?usp=drive_link
https://drive.google.com/file/d/18_RG5GiH65IAI64HE5Em7yC7hbIkfBSG/view?usp=drive_link
https://drive.google.com/file/d/18_RG5GiH65IAI64HE5Em7yC7hbIkfBSG/view?usp=drive_link
https://drive.google.com/file/d/18_RG5GiH65IAI64HE5Em7yC7hbIkfBSG/view?usp=drive_link
https://zenodo.org/records/12683869
https://zenodo.org/records/12683869
https://projects.cbio.mines-paristech.fr/graphm/
https://projects.cbio.mines-paristech.fr/graphm/
https://github.com/JigsawAttack/JigsawAttack/tree/AEStableVersion
https://github.com/JigsawAttack/JigsawAttack/tree/AEStableVersion
https://drive.google.com/file/d/1ltB3oyiDV0Ef7v0dRBlXV_wwvBUwas05/view?usp=drive_link
https://drive.google.com/file/d/1ltB3oyiDV0Ef7v0dRBlXV_wwvBUwas05/view?usp=drive_link
https://drive.google.com/file/d/1ltB3oyiDV0Ef7v0dRBlXV_wwvBUwas05/view?usp=drive_link
https://drive.google.com/file/d/18_RG5GiH65IAI64HE5Em7yC7hbIkfBSG/view?usp=drive_link
https://drive.google.com/file/d/18_RG5GiH65IAI64HE5Em7yC7hbIkfBSG/view?usp=drive_link
https://drive.google.com/file/d/18_RG5GiH65IAI64HE5Em7yC7hbIkfBSG/view?usp=drive_link
https://projects.cbio.mines-paristech.fr/graphm/
https://projects.cbio.mines-paristech.fr/graphm/

(E1.2): [20 human-minutes + 2 compute-hours]: The experi- A.5 Version
ments test Modules 1 and 2 of Jigsaw and their accuracy
with different parameters.

Execution: Run “test_alpha.py” and then run
“generate_test_alpha_pics.py” with python. Run
“test_base_conf_rec.py”.

Results: The middle results will be saved at “./result-
s/test_alpha” and the pictures (Figure 2 and 3 in Section
5.2) will be saved as “./results/test_alpha_pic_<dataset
name>". At the end of running “test_base_conf_rec.py”,
it will output the table of Table 2 in Section 5.2 in latex
form.

(E1.3): [20 human-minutes + 100 compute-hour]: The ex-
periments test the whole Jigsaw in different situations
with different parameters.

Execution: Run “test_beta.py” and then run
“generate_test_beta_pics.py” with python. Run
“test_durability.py”.

Results: The middle results and the generated pic-
tures (Figure 4 Section 5.3) will be saved at “result-
s/test_beta/”. For “test_durability.py”, the accuracy will
be directly outputted.

(E2.1): [20 human-minutes + 300 compute-hour]: The exper-

iments test all the considered attacks. The experiments
need a long time to finish as large keyword space (such
as 2000 in Enron and Lucene and 5000 in Wikipedia) is
tested and the Graphm attack takes a long time to finish.
Execution: Run “test_comparison.py” and then run
“generate_test_comparison_pics.py”.
Results: The middle results will be saved at “result-
s/test_comparison/<attack name>" and the generated
pictures (Figure 5 Section 6.2) will be saved at “result-
s/test_comparison”.

(E2.2): [20 human-minutes + 100 compute-hour]: The ex-
periment tests Jigsaw and THOP with similar runtime

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

limitations.
Execution: Run “test_compare_with_[HOP_with_lim-
ited_runtime.py” and then run “gener-

ate_compare_with_IHOP_with_limited_runtime.py”.
Results: The results and the generated picture
(Figure 6 Section 6.2) will be saved at “/result-
s/test_comparison_with_IHOP_with_limited_time/”.
(E3): [60 human-minutes + 300 compute-hour]: The exper-
iments test Jigsaw, RSA, and IHOP when against dif-
ferent countermeasures. These experiments take a long
time to finish as we test four countermeasures and use a
large dataset, i.e. Wikipedia, with large keyword universe
sizes, i.e. 3000 and 5000.
Execution: Run “test_against_countermeasure.py” and
then run “generate_test_against_countermeasure.py”.
Results: The results and pictures will be saved at “./re-
sults/test_against_countermeasures/” (Figures 7,8,9, and
10 in Sections 7.1 and 7.2 and Figures 16, 17, 18, and 19
in Appendix F).

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

