
USENIX Security ’24 Artifact Appendix: SWOOSH: Efficient
Lattice-Based Non-Interactive Key Exchange

Phillip Gajland1,2, Bor de Kock3, Miguel Quaresma1, Giulio Malavolta4,1, and Peter Schwabe1,5

1Max Planck Institute for Security and Privacy, Bochum, Germany
2Ruhr University Bochum, Bochum, Germany

3NTNU – Norwegian University of Science and Technology, Trondheim, Norway
4Bocconi University, Milan, Italy

5Radboud University, Nijmegen, The Netherlands
phillip.gajland@{mpi-sp.org,rub.de}, bor.dekock@ntnu.no,

{miguel.quaresma,giulio.malavolta}@mpi-sp.org, peter@cryptojedi.org

A Artifact Appendix

A.1 Abstract
This is the artifact for the "Swoosh: Efficient Lattice-Based
Non-Interactive Key Exchange" paper.

Although earlier work has shown that lattice-based Non-
Interactive Key Exchange (NIKE) is theoretically possible, it
has been considered too inefficient for real-life applications.
In this work, we challenge this folklore belief and provide the
first evidence against it. We construct an efficient lattice-based
NIKE whose security is based on the standard module learn-
ing with errors (M-LWE) problem in the quantum random
oracle model.

To substantiate our efficiency claim, we provide an opti-
mised implementation of our passively-secure construction
in Rust.

Our scheme achieves a post-quantum security level exceed-
ing 120 bits.

The main contributions of this artifact are:

• Optimized implememtation of Passive-Swoosh, a
Lattice-based Non-Interactive Key Exchange

• Sage script to estimate security of Passive-Swoosh

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact contents of the are accessi-
ble at: https://git.noc.ruhr-uni-bochum.

de/miranmfx/swooshuae/-/tree/
477a06ba19b84ccf5e0994bed0a2e20de97acb87, with
commit hash 477a06ba19b84ccf5e0994bed0a2e20de97acb87.

A.2.3 Hardware dependencies

No special hardware is required to evaluate the artifact aside
from a machine running an AMD64 CPU.

A.2.4 Software dependencies

In order to evaluate the artifact and reproduce the claims
made, an installation of the Rust compiler, version 1.62.18, is
required. Furthermore, the Sage CAS, should also be installed
in order to run replicate the security estimates that underly
the claims made in the paper.

A.2.5 Benchmarks

See below.

A.3 Set-up
The artifact can be set up via Docker or manually. Instructions
for both set-ups are provided below.

A.3.1 Docker set-up

This artifact contains a Dockerfile which sets up a container
with Rust and Sage along with the contents of the artifact. For
information on the installation of Docker see https://docs.
docker.com/get-docker/.

To setup Rust and Sage using Docker run:

docker build -t swoosh .

mailto:phillip.gajland@mpi-sp.org,phillip.gajland@rub.de
mailto:bor.dekock@ntnu.no
mailto:miguel.quaresma@mpi-sp.org
mailto:giulio.malavolta@mpi-sp.org
mailto:peter@cryptojedi.org
https://git.noc.ruhr-uni-bochum.de/miranmfx/swooshuae/-/tree/477a06ba19b84ccf5e0994bed0a2e20de97acb87
https://git.noc.ruhr-uni-bochum.de/miranmfx/swooshuae/-/tree/477a06ba19b84ccf5e0994bed0a2e20de97acb87
https://git.noc.ruhr-uni-bochum.de/miranmfx/swooshuae/-/tree/477a06ba19b84ccf5e0994bed0a2e20de97acb87
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

You can run the Docker images with:

docker run -it swoosh

Remarks: please note that running benchmarks inside a
container will impact the measurements.

A.3.2 Manual set-up

To install Rust & Sage run the following commands in the
artifact directory:

1. Install Sage
On Debian and derivatives
apt-get install sagemath python3 python3-pip

on macOS
brew install sage

2. Install Rust
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs

| sh↪→

3. Install Python dependencies (required by
lattice-estimator)↪→

pip install -r security/requirements.txt

For more information on Rust installation see:
https://www.rust-lang.org/tools/install.
For more information on Sage installation see:
https://doc.sagemath.org/html/en/installation.

Remarks: please note that Rust should be at least on verion
1.59. For this work, Rust version 1.62 was used.

A.3.3 Testing the set-up

A basic sanity check to ensure the code provided works as ex-
pected can be done using one of two methods. The following
command will run the unit tests for the scheme:

make test

This command should output the following1:

Running unittests src/lib.rs
(target/debug/deps/ref0-c35ef30ce0a779e4)↪→

running 1 test
test tests::test_scheme ... ok

successes:

successes:
tests::test_scheme

test result: ok. 1 passed; 0 failed; 0 ignored; 0
measured; 15 filtered out; finished in 0.10s↪→

To run a basic correctness test on the scheme, use the fol-
lowing command:

make test_scheme

1The warnings about the external AES implementation can be ignored.

This command should output the following2:

Running unittests src/lib.rs
(target/debug/deps/ref0-c35ef30ce0a779e4)↪→

running 16 tests
test arithmetic::fq::tests::test_cmp ... ok
test arithmetic::fq::tests::test_fp_add ... ok
test arithmetic::fq::tests::test_fp_bytes ... ok
test arithmetic::fq::tests::test_fp_mul ... ok
test arithmetic::fq::tests::test_fp_sub ... ok
test arithmetic::poly::tests::test_poly_add ... ok
test arithmetic::poly::tests::test_poly_bytes ... ok
test arithmetic::poly::tests::test_poly_ntt ... ok
test arithmetic::polyvec::tests::test_polyvec_add ... ok
test arithmetic::polyvec::tests::test_polyvec_bytes ...

ok↪→

test tests::test_getnoise ... ok
test tests::test_rec ... ok
test tests::test_round ... ok
test arithmetic::poly::tests::test_poly_basemul ... ok
test tests::test_genoffset ... ok
test tests::test_scheme ... ok

successes:

successes:
arithmetic::fq::tests::test_cmp
arithmetic::fq::tests::test_fp_add
arithmetic::fq::tests::test_fp_bytes
arithmetic::fq::tests::test_fp_mul
arithmetic::fq::tests::test_fp_sub
arithmetic::poly::tests::test_poly_add
arithmetic::poly::tests::test_poly_basemul
arithmetic::poly::tests::test_poly_bytes
arithmetic::poly::tests::test_poly_ntt
arithmetic::polyvec::tests::test_polyvec_add
arithmetic::polyvec::tests::test_polyvec_bytes
tests::test_genoffset
tests::test_getnoise
tests::test_rec
tests::test_round
tests::test_scheme

test result: ok. 16 passed; 0 failed; 0 ignored; 0
measured; 0 filtered out; finished in 0.10s↪→

A.4 Evaluation workflow
The major claims and experiments described in the paper
were obtained on an Intel Core i7-6500U (Skylake) running
on a single core with Hyper-threading and TurboBoost
disabled. The Rust compiler version used for the benchmarks
was 1.62.18.

A.4.1 Major Claims

(C1): Passive-Swoosh shared-key derivation is faster, by a
factor of 48, than CTIDH, another post-quantum NIKE.
Key generation is faster by a factor of ≈ 3.

(C2): Compared to post-quantum KEMs, such as Kyber-768
and mceliece348864, Passive-Swoosh is several orders
of magnitude slower.

2Same as before.

https://www.rust-lang.org/tools/install
https://doc.sagemath.org/html/en/installation

(C3): Swoosh achieves over 120 bits of post-quantum secu-
rity.

A.4.2 Experiments

(E1): Passive Swoosh cycle counts: obtain the cycle count
measurements for Passive-Swoosh presented in Table 2
of the original paper.
How to: Run the following command in the artifact’s
root directory
make bench_scheme

This command should output the following3:
Running `target/debug/bench_scheme`
keygen (cycles):
average: 80062472
median: 89441519

skey_deriv (cycles):
average: 5522018
median: 6212299

(E2): Passive Swoosh security level: obtain an estimate for
the post-quantum security level achieved by the scheme.
How to: Run the following command in the artifact’s
root directory
cd security && sage swoosh_estimator.py

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

3Same as before.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Docker set-up
	Manual set-up
	Testing the set-up

	Evaluation workflow
	Major Claims
	Experiments

	Version

