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A Artifact Appendix

A.1 Abstract

Our PatchCURE paper proposes a defense framework against
adversarial patch attacks to approach the challenging trade-
off problem between certifiable robustness, model utility, and
computation efficiency. PatchCURE can achieve similar in-
ference efficiency as undefended models when optimized
for efficiency; it also achieves state-of-the-art robustness and
utility performance across all different efficiency levels.

This artifact can reproduce all experimental results (clean
accuracy, certified robust accuracy, and inference throughput)
reported in the main body of the paper to support our claims.
It is based on PyTorch and requires GPU support. We imple-
mented Algorithm 1 (construction, inference, and certification
procedures) of our PatchCURE paper.

Our source code is available at https://
github.com/inspire-group/PatchCURE/tree/
40695a870e018b76cf5ec105ab36346c780e756d. We
further provide a detailed guide for evaluating our artifact
at https://github.com/inspire-group/PatchCURE/
blob/40695a870e018b76cf5ec105ab36346c780e756d/
reproducibility.md.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

No destructive steps. We only use curated datasets that are
publicly available.

A.2.2 How to access

We host our source code on GitHub at https://github.
com/inspire-group/PatchCURE.

Specifically, we use this commit for the artifact evalua-
tion: https://github.com/inspire-group/PatchCURE/
tree/40695a870e018b76cf5ec105ab36346c780e756d.

A.2.3 Hardware dependencies

The artifact requires 4 CPU cores and 1 GPU. We tested it
with Intel Xeon CPU and NVIDIA RTX A4000 GPU.

A.2.4 Software dependencies

The artifact is based on Python, PyTorch, timm, and other
Python packages. All packages can be easily installed with
pip or conda; we provide a list of required packages in
requirement.txt. We ran our experiments on a machine
install with Red Hat Enterprise Linux 8; but the artifact should
be runnable on a different OS.

A.2.5 Benchmarks

We focus on the publicly available ImageNet. See our repro-
ducing instructions for more details.

We focus on two families of image classifier models:
ResNet, and Vision Transformer. We build models using timm
as well as our customized code; we provide download links
to our pre-trained weights. See our reproducing instructions
for more details.

A.3 Set-up

A.3.1 Installation

1. Install Python 3.10.

2. Install GPU-compatible PyTorch 1.13.1.

3. Install other Python dependencies.

4. Clone the source code from

5. Download datasets.

6. Download pre-trained weights.

We provide detailed instructions and commands in our
reproducing instructions.
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A.3.2 Basic Test

Below is the command for the functionality test.
python main.py --model vitsrf14x2_masked
--patch-size 32 --mask-stride 1 --certify
--runtime --batch-size 4 --num-img 100

It should be finished in a few seconds and print the follow-
ing information to the console.

Clean Accuracy: 0.82
Certified Robust Accuracy: 0.53
Throughput: 189.91022253293076 img/s

A.4 Evaluation workflow
Our experiment is based on the script main.py, in which
we call our construction, inference, and certification proce-
dures (discussed in Algorithm 1 of our paper). By running
this script with proper command (we provide all necessary
commands to run main.py in our reproducing instructions),
we can read clean accuracy, certified robust accuracy, and
inference throughput from the console. We can compare the
obtained results with the results reported in the paper to vali-
date the reproducibility of our paper.

A.4.1 Major Claims

(C1): PatchCURE can build defense instances that have sim-
ilar efficiency as undefended models. This can be vali-
dated using E1 and E2, which provide Table 2 and Table
3 in our paper. See Section 4.2 of our paper for more
discussions (its second paragraph).

(C2): PatchCURE provides a systematic way to balance the
three-way trade-off between robustness, utility, and effi-
ciency; it achieves state-of-the-art utility and robustness
performance across different efficiency levels. This can
be validated using E2, which provides Table 2, Figure
1, and Figure 6. See Section 4.2 of our paper for more
discussions (its third, fourth, and fifth paragraphs).

(C3): Other minor claims as discussed in Section 4.2 and
Section 4.3. They can be validated using E3.

A.4.2 Experiments

We provide estimated experiment runtime for the entire Ima-
geNet dataset using 4 Intel Xeon CPUs and 1 NVIDIA RTX
A4000 GPU. We note that some experiments might take up
to a few days. To reduce experiment runtime, we also provide
an option to run experiments on a random subset of the Im-
ageNet datasets. We can add an argument --num-img 1000
to only use 1000 images (1/50 of the entire set) to obtain an
approximated evaluation result. We provide more details in
reproducing instructions.
(E1): [undefended models] [10 human-minutes + 1 compute-

hour]:

Preparation: See Section A.3. No extra preparation is
needed.
Execution: Run commands as detailed in the section of
“Table 2: vanilla undefended model performance” in our
reproducing instructions.
Results: Read results from the console. The numbers
should match Table 2 in our paper.

(E2): [PatchCURE defenses] [20 human-minutes + 3
compute-day (for one command) + 24 compute-hour
(for all other commands)]:
Preparation: See Section A.3. No extra preparation is
needed.
Execution: Run commands as detailed in the section
of “Table 3: main results (as well as Figure 1 + Figure
6)” in our reproducing instructions. Feel free to add
--num-img 1000 to compute approximated results with
shorter runtime.
Results: Read results from the console. The numbers
should match Table 3 in our paper.

(E2): [PatchCURE defenses] [30 human-minutes + 3
compute-day (for one command) + 24 compute-hour
(for all other commands)]:
Preparation: See Section A.3. No extra preparation is
needed.
Execution: Run commands as detailed in other sections
of our reproducing instructions.
Results: Read results from the console. The numbers
should match other tables and figures presented in our
paper.

Our algorithms are deterministic. Therefore, we do not
expect any large variation in results if the experiments are
conducted on the entire dataset. However, it is possible to
have small mismatches (< 1%) due to the imprecise float
point computation on different hardware (e.g., GPUs).

A.5 Notes on Reusability
N/A

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.
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