
USENIX Security ’24 Artifact Appendix: CO3 Concolic Co-execution for
Firmware

Changming Liu
Northeastern University

Alejandro Mera
Northeastern University

A Artifact Appendix

A.1 Abstract
This artifact contains all the source code and scripts devel-
oped for the CO3 project. It has three main components: 1.
the instrumentation pass, 2. the firmware source code, 3. the
orchestrator.

The workflow is that, we use the instrumentation pass to in-
strument the application code inside the firmware source code.
The instrumented firmware, when flashed into the microcon-
troller board, will report the program status either through the
USB port, or a serial port to the workstation. The orchestrator
running on the workstation will receive the information and
then start doing concolic execution.

The difficulty in reproducing this experiment is the lack
of the physical MCU that runs the instrumented firmware.
Moreover, flashing the firmware to the board requires some
domain knowledge and is unfriendly to people who do not
have experience with the MCU.

As a result, we prepare a Linux program that can be in-
strumented and carry out the same process mentioned above.
This experiment is not mentioned in our main paper, its sole
purpose is to carry out the experiment in a more controlled
and accessible environment (i.e., the linux OS) compared to
the original MCU board environment.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None

A.2.2 How to access

The whole code can be accessible at git clone https://
github.com/Lawliar/CO3/releases/tag/v1.0.0

Please clone this repo and follows the readme.

A.2.3 Hardware dependencies

The original CO3 requires the MCU. However, since pur-
chasing a MCU and the subsequent flashing the firmware are
not feasible, we prepare a linux program as a replacement to
perform concolic co-execution.

A.2.4 Software dependencies

• Docker

A.2.5 Benchmarks

CGC-CROMU-00001

A.3 Set-up
We have packaged all the building process into the dockerfile.
By running

d oc ke r b u i l d . − t co3

one will be able to set up the environment, build the instrumen-
tation pass, instrument the CGC-CROMU-00001 program,
build the orchestrator. These are the same components used
in the firmware setting, with special configuration to run on
the workstation.

A.3.1 Installation

Everything is inside the docker container once it is built. Then
run

d oc ke r run − i t co3 / b i n / bash

to launch the container.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The core design of CO3 is to instrument the target
program. The instrumented program will automatically
report symbolic state to the orchestrator. The orches-
trator will receive the messages from the instrumented
program and generate alternative inputs through con-
colic execution.

A.4.2 Experiments

(E1): Instrumentation and generate Symbolic Value Flow
Graph (SVFG) [a few seconds computer time]: Using
the LLVM pass that we develop, one should be able to

https://github.com/Lawliar/CO3/releases/tag/v1.0.0
https://github.com/Lawliar/CO3/releases/tag/v1.0.0


instrument a program. After instrumentation, we gen-
erate a binary that has reporting logic embedded in it.
Besides, the SVFG should also be produced.
How to: This instrumentation process was automated
in /CO3_SOURCE/sym_runtime/CROMU_00001/CMa
keLists.txt. This process has already been executed
when building the docker image.
However, this process can be re-executed. One can
simply delete the build and intermediate_results
folder, and run cmake to generate them again.
Execution: Run cmake following the command in
dockerfile. Specifically,

• create a build folder under CROMU_00001

• Under the build folder, run cmake
-DCO3_32BIT=OFF -DCO3_NO_SHADOW=OFF
-DCO3_DOCKER_BUILD=ON ..

• make

Results: • The SVFGs will be generated under
intermediate_results.

• The executable will be generated under build.

• Both of them will be in the same level.
(E2): Concolic Co-execution. The instrumented program

will communicate with the orchestrator to perform con-
colic execution.
How to: We launch the instrumented program, it then
will wait for input from the orchestrator. We then launch
the orchestrator, specifying the SVFG folder. Since this
process requires running two processes at the same time,
we wrote a script to simplify the process.
Execution: One can simply go to
/CO3_SOURCE/utils, then execute

py thon3 c o 3 _ w o r k s t a t i o n . py −p 0 −b 0

Results: One can expect to see concolic execu-
tion be performed as the output shows. Feel free
to execute as long as you feel like, and terminate
with ctrl + c. The generated inputs will be in
/CO3_SOURCE/sym_runtime/CROMU_00001/interme
diate_results/output.
Possible Issue: If the python script complains
about the missing concreteInputs.bin. It means
that, it tries to read the seed input from the
/CO3_SOURCE/sym_runtime/CROMU_00001/interme
diate_results/concreteInputs.bin but it
was missing. One can simply copy the PoV file
/CO3_SOURCE/sym_runtime/CROMU_00001/pov/fir
st1K.xml.bin2 to /CO3_SOURCE/sym_runtime/CRO
MU_00001/intermediate_results/concreteInputs
.bin, and run touch
/CO3_SOURCE/sym_runtime/CROMU_00001/interme
diate_results/fileUSB.bin

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation

	Evaluation workflow
	Major Claims
	Experiments

	Version


