
USENIX Security ’24 Artifact Appendix: Invisibility Cloak: Proactive
Defense Against Visual Game Cheating

Chenxin Sun*, Kai Ye*, Liangcai Su, Jiayi Zhang, Chenxiong Qian†

The University of Hong Kong

A Artifact Appendix
A.1 Abstract
The increasing prevalence of visual aimbots in first-person
shooter games poses a significant threat to fair play and gam-
ing experience. Visual aimbots utilize game visuals and inte-
grated visual models to extract game information, providing
cheaters with automatic shooting capabilities. To counter this,
we present Invisibility Cloak, the first proactive defense frame-
work against visual game cheating. Our approach introduces
imperceptible perturbations to game visuals, rendering them
unrecognizable to AI models. This artifact highlights a subset
of the experimental data and samples described in the paper.
While the same operations can be applied to CF, this artifact
only showcases the demos related to CS2. The results indicate
that our approach maintains a high defense success rate while
ensuring efficiency and smooth gameplay.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There is no risk associated with downloading or modeling
any of the data or models created through this article. The
code does not involve any destructive steps or the disabling
of security mechanisms.

A.2.2 How to access

The artifact can be accessed from the follow-
ing GitHub repository: https://github.com/
GamesecInvisicloak/Invisibility-Cloak/tree/
a54a6fa3bf16f617ac7c367201b5978ce91c2265. The
repository includes all the necessary code, datasets, and
instructions to reproduce the experiments.

A.2.3 Hardware dependencies

This artifact requires a system with an NVIDIA GPU for run-
ning the deep learning models efficiently. The specific hard-

*Equal Contribution.
†Corresponding author.

ware used in our experiments includes an Intel(R) Xeon(R)
Gold 5418Y CPU with 96 cores and an NVIDIA GeForce
RTX 4090 GPU with 24.564 GB of memory. If you use our
provided Docker environment, please ensure your GPU model
supports CUDA 12.5.0. If you are configuring the environ-
ment yourself, any GPU model will suffice.

A.2.4 Software dependencies

The artifact requires Python 3.8 or higher. The key software
packages needed are CUDA, Conda (recommended) or a
Python virtual environment, PyTorch, etc. All other dependen-
cies can be installed using the provided requirements.txt
file in the repository. We used YOLO series models
(’yolov5n’, ’yolov5s’, ’yolov5m’) in our experiments, but
the models are provided within the artifact and do not
require additional downloads. You can download CUDA
using the following link: https://developer.nvidia.
com/cuda-toolkit; You can download Conda using the
following link: https://conda.io/projects/conda/en/
latest/user-guide/install/index.html. Other depen-
dencies can be downloaded using requirements.txt file.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

We provide a pre-configured Docker image with all the
required environments installed, making it easy to run the
scripts directly. You can download the image using the follow-
ing link: https://drive.google.com/file/d/1FcUy_
LG8ySqxaLJAb1_W_PWFeucLT1gA/view?usp=sharing.
First, download the Docker image file and load it, run:

↪→ docker load -i invisicloak_configured.tar

Then, run the Docker container with GPU support:

↪→ docker run -it --rm
--gpus all invisicloak:configured

https://github.com/GamesecInvisicloak/Invisibility-Cloak/tree/a54a6fa3bf16f617ac7c367201b5978ce91c2265
https://github.com/GamesecInvisicloak/Invisibility-Cloak/tree/a54a6fa3bf16f617ac7c367201b5978ce91c2265
https://github.com/GamesecInvisicloak/Invisibility-Cloak/tree/a54a6fa3bf16f617ac7c367201b5978ce91c2265
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://drive.google.com/file/d/1FcUy_LG8ySqxaLJAb1_W_PWFeucLT1gA/view?usp=sharing
https://drive.google.com/file/d/1FcUy_LG8ySqxaLJAb1_W_PWFeucLT1gA/view?usp=sharing

The Docker container already includes CUDA 12.5.0 and
the invisicloak Conda environment pre-installed. To acti-
vate the Conda environment, run:

↪→ conda activate invisicloak

If you prefer not to use Docker, you can manually set it up
with Conda. First, create and activate an environment:

↪→ conda create -n invisicloak python=3.8
↪→ conda activate invisicloak

Next, install the required packages:

↪→ pip install -r requirements.txt

A.3.2 Basic Test

After successfully setting up the experimental environment,
we use data from different game scenarios in CS2 to test the
effectiveness of Invisibility Cloak. The purpose of our basic
test is to evaluate whether the Cloak we generate can success-
fully defend against visual aimbots’ detection when applied
to the game screen samples. This test will utilize YOLO se-
ries models as the local proxy model and the target cheating
model to assess Cloak’s performance and effectiveness.

To generate cloaked samples for a chosen demo scenario
(e.g., stand) in the CS2 game, use the following command:

↪→ python get_cloak.py --scenario stand

The script will generate Cloaks and add them to the input
scenario samples, creating protected images. We can use vari-
ous command line arguments to customize the execution, such
as specifying the number of iterations, learning rate, attack
strength, models to use, and GPU device. For example, here
we recommend visualizing GIFs of cloaked samples using the
following command to simulate the actual gameplay screen:

↪→ python get_cloak.py --visualize_gif 1

The available options are summarized below:

• -n_iter: Number of iterations.

• -lr: Learning rate for the optimizer.

• -epsilon: The ℓ∞-norm constraint (ε).

• -local_model: The local proxy model to use.

• -target_model: The target cheating model to defend.

• -gpu: GPU device to use for computation.

• -use_universal_cloak: Whether to use Universal Cloak.

• -visualize_gif: Whether to generate a GIF.

• -scenario: CS2 demo scenario to use.

Please refer to the repository’s README file for detailed
information on each argument and additional usage options.

Listing 1: The expected successful output of generating
cloaked samples and GIFs for a chosen demo scenario.

1

2 > python get_cloak.py --scenario stand --visualize_gif 1
3 We are using the Universal Cloak.
4 dust2_stand 451
5 Fusing layers...
6 YOLOv5n summary: 213 layers, 1867405 parameters, 0

gradients, 4.5 GFLOPs
7 Adding AutoShape...
8 YOLOv5 ÷ 2024-6-16 Python-3.8.19 torch-2.3.1+cu121 CUDA:0

(NVIDIA GeForce RTX 4090, 24118MiB)
9

10 Fusing layers...
11 YOLOv5n summary: 213 layers, 1867405 parameters, 0

gradients, 4.5 GFLOPs
12 Adding AutoShape..
13 2024-06-17 22:48:58.312 | INFO | __main__:main:243 -

Attack Begin
14 2024-06-17 22:48:58.312 | INFO | __main__:main:245 -

universal_cloak/cs2/yolov5n_yolov5s_yolov5m/Best-
Succ-0.84-BS-16-LR-0.001.pt

15 2024-06-17 22:48:58.312 | INFO | __main__:main:249 -
len dataset 451

16 2024-06-17 22:48:58.656 | INFO | __main__:main:283 -
Index:0 LSucc:1 TSucc:1 Single_Time:0.137 Query:1
SSIM: 0.722

17 2024-06-17 22:48:58.657 | INFO | __main__:main:285 -
Total:451 DSR:1.000 AvgTime:0.137 FPS:7.310 AvgSSIM:
0.722

18 Saved 1 image to result/visualization/cs2_demo/stand/
attack/0

19 Saved 1 image to result/visualization/cs2_demo/stand/gt/0
20 ...
21 ...
22 2024-06-17 22:49:31.796 | INFO | __main__:main:283 -

Index:450 LSucc:1 TSucc:1 Single_Time:0.005 Query:1
SSIM: 0.761

23 2024-06-17 22:49:31.797 | INFO | __main__:main:285 -
Total:451 DSR:1.000 AvgTime:0.004 FPS:235.844
AvgSSIM: 0.745

24 Saved 1 image to result/visualization/cs2_demo/stand/
attack/450

25 Saved 1 image to result/visualization/cs2_demo/stand/gt
/450

26 2024-06-17 22:50:13.578 | INFO | __main__:main:299 -
Creating Gif every 100 frames

After inputting the chosen scenario and other options (e.g.,
generating GIFs), the expected output is shown in Listing 1.
These outputs display various evaluation metrics that can be
viewed directly in the terminal. Additionally, the logs and the
generated cloaked samples are saved in the result directory.

A.4 Notes on Reusability
The Invisibility Cloak framework can be adapted for other
first-person shooter games beyond CF and CS2 by collecting
appropriate datasets and fine-tuning the perturbation models.
The code is modular and can be extended to include additional
visual models for enhanced defense capabilities.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Notes on Reusability
	Version

