ARTIFACT
EVALUATED EVALUATED
susenix susenix

ssssssssssssssssssss

ARTIFACT

AVAILABLE

USENIX Security *24 Artifact Appendix: DMAAuUTH: A Lightweight
Pointer Integrity-based Secure Architecture to Defeat DMA Attacks

Xingkai Wang, Wenbo Shen™, Yujie Bu, Jinmeng Zhou, and Yajin Zhou

Zhejiang University

A Artifact Appendix

A.1 Abstract

To defend DMA attacks effectively with low overhead, we
design and implement DMAAUTH, a novel hardware-software
co-design to enforce spatial and temporal protection for DMA
buffers. It registers information for each DMA buffer and
signs the DMA pointers when creating DMA buffer map-
pings, and authenticates the DMA using the signature and cor-
responding buffer information, including a unique identifier
and bounds. Before designing DMAAUTH, we performed
a detailed Characterization. We implemented DMAAUTH on
RISC-V and ARM QEMU, as well as on Rocket Chip based
RISC-V SoC on FPGA.

This artifact contains the QEMU setup and analyzing tool
to perform characterization, ARM and RISC-V QEMU with
DMAAUTH emulation, and FPGA-based SoC with DMAAUTH
and IOMMU hardware, as well as Linux kernels with cor-
responding drivers for each of the platforms described in
implementation.

A.2 Description & Requirements

The private key and ssh configuration is provided in the
HotCRP submission.

A.2.1 Security, privacy, and ethical concerns

None. But the reviewer may want to use VPN to connect to the
provided server to avoid any potential information leakage.

A.2.2 How to access

The DOI is 10.5281/zenodo.12216074. It can be ac-
cessed viahttps://doi.org/10.5281/zenodo.12216074.
All the required copy of the files are contained in
/home/reviewer/Artifacts in the provided server. Reviewers
may want to use the local version directly since the artifacts
is quite large.

=1 Corresponding author.

A.2.3 Hardware dependencies

The provided server is already connected to the hardware.

XCKU040 FPGA, FMC-to-PCle adaptor card, SD card,
PCle device required to test the functionality of the SoC with
DMAAUTH support.

o
(0]
o
o
(o]
)

Figure 1: Hardware platform for the artifacts.

A.2.4 Software dependencies

The provided server is already capable of running the artifact.
The environment is Ubuntu 22.04.4 LTS with the required
package to build Linux kernel, and AMD Vivado 2022.02.

A.2.5 Benchmarks

None.

A.3 Set-up

The environment is already provided on the server. If using
our provided server, skip the A.3.1 section.

For reviewers who want to try the artifact on their own
machine, the following steps are required.

https://doi.org/10.5281/zenodo.12216074

1. Please install the dependencies required to build the
Linux kernel. 2. Please install Vivado 2022.2 to build the
FPGA bitstream. 3. Download and extract the artifacts from
provided zenodo DOL.

A.3.1 Installation

If using the provided server, no extra steps are required.

When evaluating the artifacts on your local machine, about
300GB of disk space is required. And we recommend using
Ubuntu 22.04, the same distribution as we provided.

Please install build dependencies for the kernel and emu-
lator using command sudo apt install build-essential
libncurses-dev bison flex libssl-dev libelf-dev bc
ninja-build libsdl2-dev libpixman-l-dev libslirp-dev
gcc-aarch64-linux-gnu gcc-riscv64-linux-gnu autoconf
python3-tgdm iperf3.

Please download and install Vivado 2022.2 from
https://www.xilinx.com/support/download/
index.html/content/xilinx/en/downloadNav/
vivado-design-tools/archive.html. In the instal-
lation options, please select Vitis to avoid potential problems.

To synthesis the FPGA bitstream, a enterprise li-
cense is required. But flashing the bitstream to the
FPGA does not require a license. Please follow the
official guide https://docs.amd.com/r/en-US/
ug973-vivado-release-notes—install-license/

Managing-Licenses-with-the-Vivado-License-Manager

to install the license.

RootFS are provided directly in the emulator/images di-
rectory. If you want to build the rootfs from scratch, please
follow these steps:

1. Download buildroot from https://buildroot.org/
download.html, and extract the archive.

2. Enter the buildroot directory, and run make meunuconfig.
And change the following options:

Target options — Target Architecture — RISCV Or
AArch64 (little endian).

Filesystem images — ext2/3/4 root filesystem —
ext2/3/4 variant (extd).

3. Save the configuration and run make to build the rootfs.

4. Copy the generated output/images/rootfs.ext4 to the
emulator/<arch>.img directory.

A.3.2 Basic Test

Please follow the following steps to run the basic test.

1. Go to the artifacts directory.

2. Enter the emulator directory.

3. Run make riscv to start the RISC-V QEMU emulator
with DMAAUTH support.

4. Enter root to login, a shell should start.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We characterize the DMA buffer usage in Linux kernel
and show that the DMA buffer is reused and shared
among different devices. As depicted in Section 3 in the
paper, in Table 1 and Figure 2. The functionality is tested
in(El).

(C2): We implement DMAAUTH on RISC-V and ARM QEMU,
as discussed in Section 6 in our paper. The functionality
is tested in (E2).

(C3): We implement DMAAUTH based on a RISC-V SoC on
FPGA, as discussed in Section 6 in our paper. The func-
tionality is tested in (E3).

A.4.2 Experiments

(E1): [Characterization] [10 human-minutes + 1 compute-
hour + 30GB disk]: This runs the characterization of
DMA behavior of different peripherals and correspond-
ing result analysis. More details are provided in the
Artifacts/character/readme.md

Preparation: In the provided server, enter
Artifacts/character. Or download the charac-
ter.tar.gz from zenodo and extract it, then enter the
character directory.

Execution: Run the following command.

1. make clean

2. make gemu to build the emulator.

3. make linux to build the Linux kernel.

4. make analyze to start automatic data collection and
then analyze the collected data.

Results: A analysis of the collected DMA behavior will
be displayed.

(E2): [Emulator Functionality] [l human-hour + 1
compute-hour + 20GB disk]: This tests the func-
tionality of the DMAAUTH implemented on the
QOEMU emulators. More details are provided in the
Artifacts/emulator/readme.md

Preparation: In the provided server, enter
Artifacts/emulator. Or download the emula-
tor.tar.gz from zenodo and extract it, then enter the
emulator directory.

Execution: Run the following commands.

1. make clean

2. make arm, then the ARM QEMU will start running.
Then, enter root and hit enter, then you will get the
shell. You can now mount /dev/nvmeOnlpl .mount
and read and write the .mount directory to test if the
NVMe disk works on PCle bus, and afterwards, you can
ping some websites to see if the NIC works.

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://docs.amd.com/r/en-US/ug973-vivado-release-notes-install-license/Managing-Licenses-with-the-Vivado-License-Manager
https://docs.amd.com/r/en-US/ug973-vivado-release-notes-install-license/Managing-Licenses-with-the-Vivado-License-Manager
https://docs.amd.com/r/en-US/ug973-vivado-release-notes-install-license/Managing-Licenses-with-the-Vivado-License-Manager
https://buildroot.org/download.html
https://buildroot.org/download.html

3. make riscv, then the RISC-V QEMU will start run-
ning. Then, enter root and hit enter, then you will get the
shell. You can now mount /dev/nvmeOnlpl .mount
and read and write the .mount directory to test if the
NVMe disk works on PCle bus, and afterwards, you can
ping some websites to see if the NIC works.

Results: During the execution, the DMA mapping, un-
mapping and authentication process will be displayed in
the terminal.

(E3): [FPGA Functionality] [1 human-hour + 8 compute-

©® 9 U A W N -

hour + 20GB disk]: This allows you to flash the baseline,
iommu and DMAAUTH SoCs to FPGA board to see if
the hardware design works correctly. More details are
provided in the Artifacts/fpga/readme.md

Preparation: In the provided server, enter
Artifacts/fpga. Or download the fpga.tar.gz
from zenodo and extract it, then enter the fpga directory.

Execution: Run the following commands.

1. make clean

2. make bare-kernel && make bare-fpga to build ker-
nel and bitstream.

3. make bare-flash to flash the bare FPGA bitstream
to the FPGA. Afterwards wait for less than 1 minutes
until a menu pops up, allowing you to select the kernel.
It should be something like this:

Scanning mmc 0:1...

Found /extlinux/extlinux.conf

Retrieving file: /extlinux/extlinux.conf
RISC-V Boot Options.

1: auth
2: iommu
3: bare

Enter choice:

Enter the number of bare option, and hit enter.

Enter choice: 3

3: bare

Retrieving file: /extlinux/bare-image

After the kernel starts, enter root to login and get the
shell.

Run rm log then /disk.sh, the script finishs in about 30
minuts. Then you can cat log to see if the PCle bus
works for the NVMe disk.

Finally hit ctr1+] to quit the terminal.

4. make iommu-kernel && make iommu-fpga

5. make iommu-flash, thisis the same as the bare-flash,
but select the iommu option in the menu. Then perform
the same process as in the bare-flash process.

6. make auth-kernel && make auth-fpga

7. make auth-flash, this is the same as the bare-flash
but select the auth option in the menu. Then perform
the same process as in the bare-flash process.

Results: The kernels and FPGA bitstreams will be gen-

erated and flashed to the FPGA. In the serial terminal,
/disk.sh should run correctly, whose log can be cap-
tured by using cat log.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

