ARTIFACT
EVALUATED

é; usenix
ASSOCIATION

AVAILABLE

USENIX Security 24 Artifact Appendix:
MOAT: Towards Safe BPF Kernel Extension

Hongyi Lu!?3, Shuai Wang>', Yechang Wu?, Wanning He?, Fengwei Zhang?!-

VResearch Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
2Department of Computer Science and Engineering, Southern University of Science and Technology
3Department of Computer Science and Engineering, Hong Kong University of Science and Technology

A Artifact Appendix

A.1 Abstract

MOAT’s artifact contains the source code and the benchmarks
used in the evaluation part. We outline the steps to retrieve
the artifact and reproduce the experiments in the paper.

A.2 Description & Requirements

The artifact contains the following components.
1. MOAT’s Linux (ver. 6.1.38) source
2. A set BPF programs with various functionality

3. A set of user-space programs used to stress the MOAT’s
kernel and the BPF programs

A.2.1 Security, privacy, and ethical concerns

We make moderate modification to the original kernel that
might not be compatible with certain user-space programs
and could potentially cause data loss. Therefore, we suggest
evaluating MOAT in a clean-state machine or a VM.

A.2.2 How to access

The artifactis in https://github.com/jwnhy/MOAT-Open/
tree/blcfea3114ddf237¢c2100bclbdc53£4030£4780b.

A.2.3 Hardware dependencies

We evaluate MOAT on a target machine with an Intel 8505
CPU, 8 GiB of RAM and an 1226 network controller. A host
machine is deployed to send network packets to test the target
machine. The host machine has an Intel 12700K CPU, 32 GiB
of RAM and a RTL8125B network controller.

" Shuai Wang and Fengwei Zhang are the corresponding authors.
'VM is only suitable for functional evaluation and does not reflect the
actual performance of MOAT.

A.2.4 Software dependencies

We use no proprietary software in our evaluation.

A.2.5 Benchmarks

We use iperf3, nginx, wrk, sysfilter, Phoenix Test
Suite and UnixBench as user-space workloads. We use mod-
ified 1ibbpf (included in our repository) as BPF workloads.

A.3 Set-up
A.3.1 Installation

Prepare rootfs MOAT must be installed on a clean-state
Linux root fs. Depending on the platform (virtual/physical
machine), there are the two ways to prepare MOAT’s root fs.

If you are evaluating MOAT with physical machine (e.g.,
Intel 8505), you can install arbitrary Linux distro and replace
its kernel with MOAT’s. As a reference, we use Gentoo when
conducting the experiments in the paper.

If you are evaluating MOAT with virtual machine, you can
use debootstrap to create a Debian root fs from scratch.

Install MOAT Once you have a usable Linux, you can in-
stall MOAT’s kernel. As a reference, one can run sudo make
-3$ (nproc) && sudo make install.

A.3.2 Basic Test

One can load dropfilter.bpf.c using the 1ibbpf as a ba-
sic test for MOAT. The expected result is that all the packets
in the target network interfaces are dropped. For other tests,
one can refer to the README in our repository.

A.4 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2024/.


https://github.com/jwnhy/MOAT-Open/tree/b1cfea3114ddf237c2100bc1bdc53f4030f4780b
https://github.com/jwnhy/MOAT-Open/tree/b1cfea3114ddf237c2100bc1bdc53f4030f4780b
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Version


