
USENIX Security ’24 Artifact Appendix: Argus: All your (PHP)
Injection-sinks are belong to us.

Rasoul Jahanshahi
Boston University
rasoulj@bu.edu

Manuel Egele
Boston University
megele@bu.edu

A Artifact Appendix

A.1 Abstract
Our artifact facilitates building and running Argus on the PHP
interpreter. We packaged the artifact in a set of Docker con-
tainers. There are no restrictions on the CPU architecture or
operating system for building and running Docker containers.

In this appendix, we describe the workflow of analyzing the
PHP interpreter v5.6, identifying potential PHP APIs vulnera-
ble to insecure deserialization, and validating the identified
APIs. Finally, we demonstrate that extending a static analysis
tool (i.e., Psalm) leads to identifying a previously unknown
security vulnerability.

A.2 Description & Requirements
This section describes the requirements for running Argus’
artifact.

A.2.1 How to access

Download the artifact from: https://zenodo.org/
records/12811284

A.2.2 Hardware dependencies

None

A.2.3 Software dependencies

Docker

A.2.4 Benchmarks

In the artifact of Argus’ evaluation, we use PHP version 5.6
and Psalm v4 as the benchmark.

A.2.5 Security, privacy, and ethical concerns

This artifact only operates on local files inside the container
and does not require any communication with the Internet.
One can run the container with the flag -network none op-
tion to isolate the container.

A.3 Set-up

A.3.1 Installation

Our instructions are based on Docker containers. Please use
this link to install Docker and run these containers.

A.3.2 Prepration

In order to run our artifact, please first download the artifact
from the link provided in the github repository. Next, please
run the following commands in a terminal:

$ docker import argus-artifact.tar
argus-artifact:1.0

For the second artifact, which includes the extended
Psalm, please unzip phase-3 and run the following com-
mand in the repository’s directory:

$ cd phase-3 && ./run.sh build

The above command will build the container for the
last phase of the artifact evaluation (i.e., extending Psalm).

A.3.3 Basic Test

The basic test for this evaluation includes running the
containers as well as the preparation script inside the
containers. In order to run the artifacts, please execute the
following commands in the terminal:

$ docker run --rm --workdir /home -it
argus-artifact:1.0 bash

Finally, run the following commands inside the con-
tainer to perform a basic test of Argus:

$ cd step-1 && ./prepare.sh

The above process may take a few minutes to com-
plete. At the end, you should see the message, "The
preparation is done.".

https://zenodo.org/records/12811284
https://zenodo.org/records/12811284
https://docs.docker.com/get-docker/


A.4 Evaluation workflow
This section describes the workflow for evaluating the artifact
for Argus.

A.4.1 Major Claims

Argus is a static-dynamic analysis of the PHP interpreter to
identify vulnerable PHP APIs to injection vulnerabilities. Ac-
cording to our paper, we prove the following claims regarding
our artifact’s evaluation and its results:
(C1): Argus identifies the PHP APIs vulnerable to injection

vulnerabilities, such as insecure deserialization, by ana-
lyzing the PHP interpreter. The analysis in experiment
(E1), as detailed in Section A.4.2.1 and Table 5 of our
paper, substantiates this claim.

(C2): Argus improves the existing security analysis tools,
such as Psalm, by extending the list of taint sinks. We
prove this claim in experiment (E2), as detailed in Table
4 of our paper.

A.4.2 Experiments

(E1): [Identification] [15 human-minutes + 30 compute-
minutes + 5GB disk]: In this experiment, Argus statically
analyzes and generates the call-graph for the PHP inter-
preter v5.6. Next, Argus merges the statically generated
call-graph with the previously recorded dynamic traces
of running PHP unit tests. Finally, Argus runs the reacha-
bility analysis to detect PHP APIs vulnerable to insecure
deserialization as well as perform the validation.
How to: First, run the argus-artifact container by
executing the following command:

$ docker run --rm --workdir /home -it
argus-artifact:1.0 bash

Preparation: As mentioned in Section A.3.3, you
can run the preparation script inside the container by
executing the following command:

$ cd step-1 && ./prepare.sh

Execution: In order to run the analysis of Argus, please
execute the following command inside the container:

$ cd step-1 && ./run.sh

The above command will analyze the PHP inter-
preter and identify the APIs that are vulnerable to
insecure deserialization. This script will write the set of
potential APIs to a file named step-2/list.
In the next step, Argus validates the set of APIs detected
in the previous step. To initiate the validation process,
execute the following command:

$ cd step-2 $$ ./run.sh

The above command will execute the validation
process for the PHP APIs in the list file. Argus
generates a PHP snippet for each API, as described
in Listing 4 of our paper, and validates the API by
executing the snippet and analyzing its execution.

(E2): [Extension] [15 human-minutes + 15 compute-minute
+ 1GB disk]: In this experiment, we extend Psalm with
the results of Argus and demonstrate that extended Pslam
can identify previously unknown vulnerabilities.

How to: First, run the extended-psalm container by
executing the following command:

$ cd phase-3 && ./run shell

Execution: Inside the container, please run the following
command to run Psalm’s anlaysis without any extension:

$ ./run.sh

The command above prints out the set of detected vul-
nerabilities in the ImageMagick plugin for WordPress.
Since Psalm is not extended yet, it cannot identify the
insecure deserialization vulnerability stated in Table 4
of our paper (i.e., CVE-2022-2441). To extend Psalm
and run Psalm+Argus analysis, please run the following
command:

$ ./run.sh 1

The command above will automatically extend
Psalm to include is_executable as a sink for insecure
deserialization and run the analysis. After finishing the
analysis, Psalm+Argus prints out two newly identified
insecure deserialization vulnerabilities in ImageMagick
as well.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks
	Security, privacy, and ethical concerns

	Set-up
	Installation
	Prepration
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


