
USENIX Security ’24 Artifact Appendix: Fuzzing BusyBox: Leveraging
LLM and Crash Reuse for Embedded Bug Unearthing

Asmita1, Yaroslav Oliinyk2, Michael Scott2, Ryan Tsang1,

Chongzhou Fang1, Houman Homayoun1

1University of California, Davis 2NetRise

A Artifact Appendix

In our paper, we developed a basic python-based automation
framework to perform fuzzing on a large-batch of BusyBox
ELFs. As mentioned in the paper in Section 4.2.1, we made
that available on Github.

A.1 Abstract
We provide the automation script to perform fuzzing on a
large batch of BusyBox target binaries using AFL++. It is
provided in automation_src folder. Note : Currently it is for
busybox awk applet fuzzing, change afl_fuzz_command in
afl_fuzz.py in case of different applet. Supported target archi-
tecture : x86_64 and ARM_32. fuzz_multiple_targets.py is
the main script that takes in a bunch of collected BusyBox
target binaries, perform fuzzing on each target using AFL++
till the runtime provided by the user. And after fuzzing is
done, it stores the fuzzing stats (json) of all the target in the
output directory.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

As per our knowledge, there is no security risk involved in
using this framework.

A.2.2 How to access

Artifact is available on Github

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

Linux OS, dependent on AFL++ Qemu mode - Link, For
ARM32 based BusyBox ELFs, there are some arm depen-
dencies which is provided in arm_dependencies folder. We

have hotsed the docker image for ARM32 based ELFs :
asmitaj08/afl-qemu-arm

A.2.5 Benchmarks

None

A.3 Set-up
A.3.1 Installation

For x86 based BusyBox ELFs, it follows the steps of AFL++
installation for Qemu mode. Whereas in case of ARM32
based BusyBox , one can directly pull the provided docker
asmitaj08/afl-qemu-arm

Then use the command :
python3 fuzz_multiple_targets.py –input

/path/to/binary/collection –arch ARM_32/x86_64 –
corpus /path/to/corpus –output /path/for/output –afl-
path path/of/afl –run-time required_runtime –depend
arm_dependecies_in_case_of_arm fuzz_multiple_targets.py

A.3.2 Basic Test

After performing the above installation, and command execu-
tion , it takes in a bunch of collected BusyBox target binaries,
perform fuzzing on each target using AFL++ till the runtime
provided by the user. And after fuzzing is done, it stores the
fuzzing stats (json) of all the target in the output directory. We
have provided a sample example under the "demo_folder".

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://github.com/asmitaj08/FuzzingBusyBox_LLM/tree/v1.1
https://github.com/asmitaj08/FuzzingBusyBox_LLM/tree/v1.1
https://github.com/AFLplusplus/AFLplusplus
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Version


