
USENIX Security ’24 Artifact Appendix:
MUSES: Efficient Multi-User Searchable Encrypted Database

Tung Le Rouzbeh Behnia Jorge Guajardo Thang Hoang
Virginia Tech University of South Florida Robert Bosch LLC – RTC Virginia Tech

A Artifact Appendix

A.1 Abstract
Our MUSES prototype is a multi-writer encrypted search
system that splits trust between multiple servers in order to
efficiently hide search, result and volume patterns from a
semi-honest adversary that controls all but one of the servers.
MUSES system consists of an honest reader who can per-
form encrypted keyword search over database contributed
by multiple independent writers. Also, MUSES offers writer-
efficient permission revocation that can revoke search permis-
sion of the reader with small overhead on the writer. MUSES
is written in C++ for approximately 2,500 lines of code. Our
experiments use AWS EC2 instances.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our implementation uses standard cryptographic libraries and
other common ones that can be easily installed via package
management tools (e.g. apt on Ubuntu). It neither contains
any threat to the system’s integrity or privacy that executes
our source code nor raises any ethical concerns.

A.2.2 How to access

Our artifact is publicly available at: https://github.com/
vt-asaplab/MUSES/tree/USENIX_2024.

A.2.3 Hardware dependencies

Amazon AWS r5n.4xlarge, 128GB RAM and 1TB disk space.
Other configurations with at least 8-core CPU and 128GB
RAM also satisfy hardware requirements.

A.2.4 Software dependencies

We used standard cryptographic libraries, including OpenSSL
for IND-CPA encryption and hash functions, NTL (https://
libntl.org/) and libsecp256k1 (https://github.com/
bitcoin-core/secp256k1) for implementing public-key

encryption in our scheme, and EMP-Toolkit (https://
github.com/emp-toolkit) for IKNP OT protocol. We
used libzeromq (https://github.com/zeromq/cppzmq)
for network communication between servers and client.

A.2.5 Benchmarks

We use Enron email dataset to choose system parameters and
set up sample documents. To expedite initialization without
affecting system performance evaluation, we employ random-
ized data to accelerate initializing database on cloud.

A.3 Set-up
A.3.1 Installation

We provide specific instructions for installing libraries
and building from source code at https://github.com/
vt-asaplab/MUSES. The file README.md contains de-
tailed information, and the bash script file auto_setup.sh
can automate installation and compilation. Note that the
EMP-Toolkit library is already enclosed in our source code
and does not need to be installed explicitly.

A.3.2 Basic Test

For evaluation, the client acts as both the reader and writers.
We describe a simple test with default parameters as follows.
The server application is launched with port number 12345,
Bloom filter size m = 1120 with N = 1024 documents of a
single writer, and search result size ns = 255 as default:

• On Server 1: Go to folder Server and execute:

$ ./Server 1 12345

• On Server 2: Similarly, execute:

$ ./Server 2 12345

• On Client: Go to folder Client and execute:

$ ./Client

It outputs processing latency and bandwidth overhead of
operations including permission revocation, document update

https://github.com/vt-asaplab/MUSES/tree/USENIX_2024
https://github.com/vt-asaplab/MUSES/tree/USENIX_2024
https://libntl.org/
https://libntl.org/
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://github.com/zeromq/cppzmq
https://github.com/vt-asaplab/MUSES
https://github.com/vt-asaplab/MUSES


and keyword search, in which keyword search has a prepro-
cessing (offline) phase to prepare computational materials.

A.4 Evaluation workflow
A.4.1 Major Claims

Our MUSES scheme is a multi-writer encrypted search plat-
form that achieves a high-level of security (hide all statistical
information) while featuring user efficiency (minimal com-
munication and computation overhead) as follows:
(C1): For Bloom filter size m = 2000, the number of doc-

uments N = 215, the search result size ns = 255, and
the number of writers nw increasing from 25 to 150, the
search latency of MUSES is 2.0s–11.1s, with the reader
communication overhead is 0.4MB–2.2MB.

(C2): For the numbers of documents N = 210–219 and the cor-
responding Bloom filter sizes m = 1120–3120, the end-
to-end permission revocation latency of MUSES is 2.0s–
183.1s, where the writer latency is 27.9ms–76.1ms, and
the writer communication overhead is 4.4MB–12.1MB.

(C3): For nw = 25 writers with N = 217 documents per writer,
and Bloom filter size m = 2520, when increasing search
result size ns from 511 to 32,767, the end-to-end key-
word search delay of MUSES increases from 3.6s to 4.9s,
while the corresponding reader bandwidth overhead in-
creases from 408.9KB to 3558.9KB.

(C4): For nw = 100 writers with N = 216 documents, Bloom
filter size m= 2240 and search result size ns = 511, when
increasing the number of servers L from 2 to 6, in which
the inter-server network latency < 1ms, the search latency
of MUSES is 7.4s–8.6s, while the end-to-end permission
revocation delay is 16.5s–23.8s.

The memory required on each server depends on the con-
figuration of the experiments, including the Bloom filter size
m, the number of documents N, the number of writers nw and
the number of servers L, which is approximate:

(2m ·N +1073m+8N) ·nw +24N +2N2

230 (GB).

This is the estimated memory size needed to execute both the
preprocessing and online phases.

A.4.2 Experiments

(E1): Estimated time is 1 hour. Execute the following com-
mands and replace the parameter value followed by
-w with the corresponding number of writers nw ∈
{25,50,75,100,125,150}. For example:

• On Server 1:
$ ./Server 1 12345 -b 2000 -d 32768 -w 25

• On Server 2:
$ ./Server 2 12345 -b 2000 -d 32768 -w 25

• On Client:
$ ./Client -b 2000 -d 32768 -w 25

These experiments show the reader bandwidth cost and
the end-to-end keyword search latency of MUSES w.r.t.
varying numbers of writers nw.

(E2): Estimated time is 0.5 hour. Execute the following
commands with the parameter value followed by -b
in {1120,1440,1800,2240,2800,3120} to configure
Bloom filter size m and the parameter value followed by
-d in {210,212,214,216,218,219} to configure the corre-
sponding number of documents N. For example with the
1st pair of parameters m = 1120 and N = 210:

• On Server 1:

$ ./Server 1 12345 -b 1120 -d 1024

• On Server 2:

$ ./Server 2 12345 -b 1120 -d 1024

• On Client:
$ ./Client -b 1120 -d 1024

These experiments show the bandwidth cost and the
processing latency of the writer, as well as the end-to-end
permission revocation delay of MUSES w.r.t. different
database sizes.

(E3): Estimated time is 1.5 hour. Execute the follow-
ing commands and replace the parameter value fol-
lowed by -ns with the search result size (ns + 1) in
{512,2048,8192,32768}. For instance with ns = 511:

• On Server 1:

$ ./Server 1 12345 -b 2520 -d 131072 -w
25 -ns 512

• On Server 2:

$ ./Server 2 12345 -b 2520 -d 131072 -w
25 -ns 512

• On Client:
$ ./Client -b 2520 -d 131072 -w 25 -ns
512

These experiments show the end-to-end latency of key-
word search and the reader bandwidth cost w.r.t. varying
search result sizes.

(E4): Estimated time is 2 hour. We run experiments with
Bloom filter size m = 2240, the number of documents
N = 216 for nw = 100 writers, with 2 ≤ L ≤ 6 servers.
Modify the configuration to the corresponding number of
servers and recompile both server and client applications,
then execute the commands as above with -b 2240 -d
65536 -w 100 -ns 512. These experiments show the
effect of increasing the number of servers L to the end-to-
end keyword search and permission revocation latency.



A.5 Notes on Reusability
We implement MUSES protocols including keyword search,
document update and permission revocation as described in
the body of the paper. We support keyword search with a
small, configurable false positives rate. This is an academic
proof-of-concept prototype which has not received careful
code review and not ready for production use.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


