
USENIX Security ’24 Artifact Appendix: Stateful Least Privilege
Authorization for the Cloud

Leo Cao∗

UC San Diego
Luoxi Meng∗

UC San Diego
Deian Stefan

UC San Diego
Earlence Fernandes

UC San Diego

A Artifact Appendix
A.1 Abstract
Widely-used authorization protocols like OAuth create over-
privileged credentials because they do not provide developers
of client apps and servers the tools to request and enforce min-
imal access. In the status quo, these overprivileged credentials
are vulnerable to abuse when stolen or leaked. We introduce
an authorization framework StatefulAuth that enables creating
and using bearer tokens that are least privileged.

This artifact evaluation aims to reproduce the key results
presented in our paper. We will guide reviewers through the
setup of stateful authorization using the provided example
code. In this evaluation, the reviewers will observe that this
artifact introduces only a modest performance overhead com-
pared to standard OAuth 2.0 and the previous stateless autho-
rization framework.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns
We provide access to live AWS instances for the evaluation.
The evaluators do not need to build or execute the code on
their own machines. This helps to enhance the security and
privacy of evaluators’ machines.

A.2.2 How to access
The artifact is available on our GitHub repository (https:
//github.com/earlence-security/stateful-auth/
tree/a48dabad03e18cb70e225e12b2a9bc228dd87203).
A Markdown version of the instructions in A.3
and A.4 is available on (https://github.com/
earlence-security/stateful-auth/blob/
a48dabad03e18cb70e225e12b2a9bc228dd87203/docs/
artifact_evaluation.md).

A.2.3 Hardware dependencies
We implement a client-server framework to measure end-to-
end latency. We host our server on a c5d.2xlarge instance
with 8 vCPUs and 16 GiB memory on Amazon Web Services
(AWS) in the US East (Ohio) region, and our client app on
another instance with the same configuration in the US West
(North California) region. We provide a private SSH key for
the evaluators to access the client and server instances.

*Equal Contribution.

A.2.4 Software dependencies
We build our stateful authorization library based on Auth-
lib [3], a Python library of generic OAuth implementations.
We require Python>=3.10. requirements.txt in our repo
lists all the Python packages required to evaluate the artifact.
All these packages are already installed in the AWS instances.

A.2.5 Benchmarks
To simulate the overhead of a real system, we mock up an
implementation of Google Calendar APIs. Specifically, we
mirror the Events API [2]. We use an in-memory SQLite
database [4] for all the DB operations.

The client generates a sequence of requests. Each request
is randomly selected from the set of Events API endpoints.
Please see Section 4.3 Experiment Setup for more details.
We provide scripts that automatically send requests from the
client to the server, simplifying the evaluation process.

A.3 Set-up
A.3.1 Installation
The reviewers will connect to our AWS instances with the
private SSH key.

1. Open a terminal and SSH to the server:

$ ssh -i <PATH_TO_PRIVATE_KEY > ubuntu@ec2 -3-18-8-25.
us-east -2.compute.amazonaws.com

2. Open another terminal and SSH to the client:

$ ssh -i <PATH_TO_PRIVATE_KEY > ubuntu@ec2 -52-8-5-83.
us-west -1.compute.amazonaws.com

3. Download the policy and state updater WebAssembly
(WASM) on your local machine. These are the client-
supplied programs that attenuate the token’s authority
and define the state, respectively (Section 2.2).

We have the source code available and all the required
Python packages installed on our AWS instances. Please
note that we mark the following steps with [Server-side]
and [Client-side] to indicate which terminal each command
should be executed on.

A.3.2 Basic Test
In this test, we will first register the client app on the server
(Section 3.1.1). Then, the client app will request a token from
the server and proceed to make a simple request.

https://github.com/earlence-security/stateful-auth/tree/a48dabad03e18cb70e225e12b2a9bc228dd87203
https://github.com/earlence-security/stateful-auth/tree/a48dabad03e18cb70e225e12b2a9bc228dd87203
https://github.com/earlence-security/stateful-auth/tree/a48dabad03e18cb70e225e12b2a9bc228dd87203
https://github.com/earlence-security/stateful-auth/blob/a48dabad03e18cb70e225e12b2a9bc228dd87203/docs/artifact_evaluation.md
https://github.com/earlence-security/stateful-auth/blob/a48dabad03e18cb70e225e12b2a9bc228dd87203/docs/artifact_evaluation.md
https://github.com/earlence-security/stateful-auth/blob/a48dabad03e18cb70e225e12b2a9bc228dd87203/docs/artifact_evaluation.md
https://github.com/earlence-security/stateful-auth/blob/a48dabad03e18cb70e225e12b2a9bc228dd87203/docs/artifact_evaluation.md
https://github.com/earlence-security/stateful-auth/blob/a48dabad03e18cb70e225e12b2a9bc228dd87203/requirements.txt
https://github.com/earlence-security/stateful-auth/blob/a48dabad03e18cb70e225e12b2a9bc228dd87203/client/policies/77a6a23a3c4d424dba1e7efae21cef16d01f156c6d0194e406c98cf46c22bf37.wasm
https://github.com/earlence-security/stateful-auth/blob/a48dabad03e18cb70e225e12b2a9bc228dd87203/client/update_program/update_program.wasm


1. [Server-side] Start the server with:

$ cd stateful -auth/server
$ AUTHLIB_INSECURE_TRANSPORT=1 gunicorn -b

0.0.0.0:5000 app:app --limit -request -line=0 --
limit -request -fields=0 --limit -request -
field_size=0

2. [Server-side] Open a browser on your local machine
and go to http://3.18.8.25 and input any username
you like to sign up (for example, artifact-eval).

3. [Server-side] Create a client by clicking the "Create
Client" button, and filling out the form as follows:

Client Name: client_00
Client URI: http ://52.8.5.83
Allowed Scope: profile
Upload Policy WASM: Upload 77a6a23

a3c4d424dba1e7efae21cef16d01f156c6d0194e406c98
cf46c22bf37.wasm (the policy WASM you have
downloaded)

Upload State Updater WASM: Upload update_program.
wasm (the state updater WASM you have
downloaded)

Redirect URIs: http ://52.8.5.83/ auth
Allowed Grant Types: authorization_code
Allowed Response Types: code
Token Endpoint Auth Method: client_secret_basic

Note: we leave Policy Program Hashes and Policy
Program Endpoint as blank - this is an alternative way
to upload policy program WASM.

4. [Server-side] Click "Submit". You will be directed to
the page listing all the registered clients.

5. [Client-side] Start the client with:

$ cd stateful -auth/client
$ CLIENT_ID=<CLIENT_ID > CLIENT_SECRET=<CLIENT_SECRET

> ACCESS_TOKEN_URL='http ://3.18.8.25/ oauth/
token' AUTHORIZE_URL='http ://3.18.8.25/ oauth/
authorize' REDIRECT_URI='http ://52.8.5.83/ auth'
gunicorn -b 0.0.0.0:8080 app:app

Replace <CLIENT_ID> and <CLIENT_SECRET> with
client_id and client_id you find in the server-side
page after the client’s registration from the previous step.

6. [Client-side] Go to http://52.8.5.83, and click “Re-
quest a Token from Auth Server”. Select a policy the
client has registered. For this test, let’s select the one
starting with 77a6a. The string is a hash of the policy
WASM we downloaded. Click “Submit”.

7. [Client-side] You will see a page saying that the client
application is requesting a scope with a policy hash.
Click “Consent?” box and click “Submit”.

8. [Client-side] You will see your access token, which will
be used when the client makes a request to the server.
Click “send requests with this token”.

9. [Client-side] You will be directed to http://52.8.5.
83/make_request. The two selection boxes are default
to GET and api/me. Click “Make API call”. The ex-
pected results should be:

{
"id": 1,
"message": "Hello World!",
"username": <YOUR_USERNAME >

}
E2E Latency: ??? milliseconds

A.4 Evaluation workflow
A.4.1 Major Claims
(C1): StatefulAuth introduces modest end-to-end latency

overhead, compared with vanilla OAuth. This is proven
by E1 described in Section 4.3 End-to-End Latency,
whose results are illustrated in Figure 6(a).

(C2): The server-side latency of StatefulAuth increases pro-
portionally with the number of objects. State validation
is the predominant contributor to server-side latency.
This is proven by the server-side log of E1 described
in Section 4.3 Server-Side Latency Breakdown, whose
results are presented in Figure 6(b).

(C3): The end-to-end latency overhead of StatefulAuth is
modest when executing stateless policies, compared with
Macaroons [1]. This is proven by E2 described in Sec-
tion 4.3 Comparison of Stateless Policies with Maca-
roons, whose results are presented in Figure 7.

A.4.2 Experiments
(E1): [Latency Overhead on Stateful Policies Compared with

vanilla OAuth] [15 human-minutes + 5 compute-minutes
+ 1GB disk]: (1) Measure and compare the worst-case
end-to-end latency of vanilla OAuth and StatefulAuth
by sending requests with different numbers of objects;
(2) Breakdown the server-side latency of StatefulAuth.
Preparation: Please complete Step 1 – 8 in Sec-
tion A.3.2. Then, on the client side, press Ctrl+C to shut
down the client web app. Keep the server running.
Execution:

1. [Client-side] Send requests with a provided script:

$ cd ../scripts
$ python3 ./eval_latency.py --token <

ACCESS_TOKEN > --base -url http ://3.18.8.25
--n-iters 30 --mode stateful

Replace <ACCESS_TOKEN> with the access token
you find on http://52.8.5.83. The script will
print the end-to-end latency table of StatefulAuth
(HMAC).

2. [Server-side] Press Ctrl+C to shut down the
server. You can find the generated log file
server/logs/logs_<TIME>.txt

3. [Server-side] Restart the server without Statefu-
lAuth enabled and turn off the server-side logging:

$ cd stateful -auth/server
$ AUTHLIB_INSECURE_TRANSPORT=1

ENABLE_STATEFUL_AUTH=False ENABLE_LOGGING=
False gunicorn -b 0.0.0.0:5000 app:app --
limit -request -line=0 --limit -request -fields
=0 --limit -request -field_size=0

http://3.18.8.25
http://52.8.5.83
http://52.8.5.83/make_request
http://52.8.5.83/make_request
http://52.8.5.83


4. [Client- and server-side] Repeat Step 2 – 8 in Sec-
tion A.3.2, except (i) in Step 3, leave policy and
state updater WASM as blank, (ii) in Step 6, click
“Pop the token” and select the policy null.

5. [Client-side] Run the command in E1 Step 1, but re-
place --mode stateful with --mode baseline, and
<ACCESS_TOKEN> with the token in Step 4. The script
will print the baseline end-to-end latency table.

Results: The end-to-end latency tables generated in
Step 1 and 5 correspond to StatefulAuth (HMAC) and
OAuth end-to-end latency (height of the entire bar) in
Figure 6(a), respectively. To get the server-side latency
breakdown in Figure 6(b), on server side:

$ python3 ../scripts/server_log_summary.py --file
logs/logs_ <TIME >.txt

(E2): [Latency Comparison of Stateless Policies with Maca-
roons] [15 human-minutes + 5 compute-minutes + 1GB
disk]: Measure and compare the end-to-end latency of
StatefulAuth for stateless policies against the same pol-
icy implemented with Macaroons
Preparation for StatefulAuth Stateless Latency:
Please complete Step 1 – 8 in Section A.3.2 unless for
the special cases mentioned below. For Step 3, upload
Policy WASM program with hash starting with e265cb
instead. Policy e265cb performs multiple stateless
checks on the request. Do not upload any History
Updater, since the policy is stateless. Then, on the client
side, keep note of the new token requested and shut
down the client web app. Keep the server running.
Execution for StatefulAuth Stateless Latency:

1. [Client-side] Measure latency:

$ cd ../scripts
$ python3 ./eval_macaroon.py --token <

ACCESS_TOKEN > --base -url http ://3.18.8.25
--n-iters 30 --accept=True

$ python3 ./eval_macaroon.py --token <
ACCESS_TOKEN > --base -url http ://3.18.8.25
--n-iters 30 --accept=False

Replace <ACCESS_TOKEN> with the access token
you find on http://52.8.5.83. The first run of
script will print out the end-to-end latency of policy
accept for StatefulAuth, while the second run should
print out the latency for policy deny.

Preparation for Macaroon Latency: Please complete
Step 1 – 8 in Section A.3.2 unless for the special cases
mentioned below.

1. For Step 1, add MACAROON=True to the environment

$ cd stateful -auth/server
$ MACAROON=True ... gunicorn ...

2. For Step 3, do not upload any Policy WASM and
State Updater.

3. For Step 5, add MACAROON=True to the environment

$ MACAROON=True CLIENT_ID=<CLIENT_ID > ...
gunicorn

4. For Step 6, choose the policy with hash macaroon.
This is a dummy policy to make macaroons work
inside our infrastructure.

Execution for Macaroon Latency:
1. [Client-side] Send requests with a provided script:

$ cd ../scripts
$ python3 ./eval_macaroon.py --token <

ACCESS_TOKEN > --base -url http ://3.18.8.25
--n-iters 30 --accept=True

$ python3 ./eval_macaroon.py --token <
ACCESS_TOKEN > --base -url http ://3.18.8.25
--n-iters 30 --accept=False

Replace <ACCESS_TOKEN> with the access token
you find on http://52.8.5.83. The first run of
the script will print out the end-to-end latency of
policy accept for Macaroon, while the second run
should print out the latency for policy deny.

Results: The 4 measured end-to-end latency numbers
should align with the numbers documented in Figure 7
of the paper.

A.5 Notes on Reusability
This artifact is designed as a “drop-in” solution - an autho-
rization library for a variety of servers and clients. As men-
tioned Section 2.3, our framework provides client developers
flexibility and extensibility, allowing them to customize the
attenuation policy and state updater to best suit their needs.
Besides, although we integrate with Authlib [3] (Section 4),
our design can be integrated with any authorization library to
enable client-defined permissions and stateful authorization.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

References
[1] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson,

Ankur Taly, Michael Vrable, and Mark Lentczner. Mac-
aroons: Cookies with Contextual Caveats for Decentral-
ized Authorization in the Cloud. In Network and Dis-
tributed System Security Symposium, 2014.

[2] Google. Events | Google Calendar. https:
//developers.google.com/calendar/api/v3/
reference/events, 2023.

[3] Hsiaoming Ltd. Authlib. https://authlib.org, 2017.

[4] SQLite. In-Memory Databases. https:
//www.sqlite.org/inmemorydb.

http://52.8.5.83
http://52.8.5.83
https://secartifacts.github.io/usenixsec2024/
https://developers.google.com/calendar/api/v3/reference/events
https://developers.google.com/calendar/api/v3/reference/events
https://developers.google.com/calendar/api/v3/reference/events
https://authlib.org
https://www.sqlite.org/inmemorydb
https://www.sqlite.org/inmemorydb

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


