
USENIX Security ’24 Artifact Appendix: FV8: A Forced Execution
JavaScript Engine for Detecting Evasive Techniques

Nikolaos Pantelaios
North Carolina State University

Alexandros Kapravelos
North Carolina State University

A Artifact Appendix

A.1 Abstract
FV8 (pronounced "favorite") is a specialized version of
the V8 engine enhanced with unique capabilities. It also
integrates patches from VisibleV8 and its custom patches
to deliver a powerful tool for code analysis and execution.
FV8 forces execution of code paths to detect evasive tech-
niques in JavaScript, enhancing visibility and detecting
hidden or malicious code. It is used in both Node.js and
Chromium environments.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no specific risks associated with executing the
FV8 artifact. The original experiments, were run inside
a controlled and isolated environment and involved mali-
cious npm packages and malicious extensions potentially.
Since for this artifact evaluation we are visiting only
secure websites, there is no danger involved whatsoever.

A.2.2 How to access

The artifact can be accessed via the GitHub repository
at: https: // github. com/ wspr-ncsu/ FV8/ tree/
57fc2b2699563316958603934aba572907171162 . The
specific version of the artifact used for this evaluation is
tagged as v1.0.

A.2.3 Hardware dependencies

None. FV8 can run on any standard x86_64 hardware
with support for Docker.

A.2.4 Software dependencies

The primary software dependencies include:

• Operating System: Linux (Ubuntu 20.04 recom-
mended)

• Docker: For containerized execution

• Python > 3.10: For running scripts

• (provided) Chromium: Version 94 to 122, specifi-
cally Chromium 122 patches as a ḋeb file

• Required Python packages as specified in
requirements.txt

A.2.5 Benchmarks

For our purposes we will run FV8 on Tranco top 1k or
Tranco top 10k. In the paper, the benchmarks involve
running FV8 on datasets of browser extensions and npm
packages to detect evasive techniques.

A.3 Set-up
A.3.1 Installation

Clone the repository
git clone https://github.com/wspr-ncsu/FV8.git
cd FV8

Install required Python packages
pip install -r scripts/requirements.txt

Setup Docker
export DOCKER_BUILDKIT=0
python scripts/vv8-cli.py setup

Patch FV8 through the patches (Optional)
patch -p1 < patches/LATEST_FV8_PATCH_FILE

Otherwise (directly run the .deb file)

Install the FV8 Chromium .deb package (optional)
dpkg -i deb_files/chromium-browser-stable_ \
122.0.6261.111-1_amd64.deb

A.3.2 Basic Test

Run FV8 Chromium with a simple test URL

chromium-browser-stable --headless \
--no-sandbox --disable-gpu \
--disable-features=NetworkService \

https://github.com/wspr-ncsu/FV8/tree/57fc2b2699563316958603934aba572907171162
https://github.com/wspr-ncsu/FV8/tree/57fc2b2699563316958603934aba572907171162

--js-flags=’--no-lazy’ https://google.com

Run the FV8 Crawler
python crawler_queue_tranco.py

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): FV8 operates seamlessly on top of V8 without
any disruptions.

(C2): FV8 is compatible with VisibleV8, and the patches
can be integrated without conflicts.

(C3): FV8 increases code execution visibility, effectively
identifying JavaScript evasions and enforcing code
execution. Notably, FV8 achieves 11% higher code
coverage compared to the default V8, as demon-
strated in the experiments detailed in Section 5.1 of
the paper.

A.4.2 Experiments

(E1): [Functionality and Performance] [0 human-
minutes + 5 compute-minutes] Install the .deb
file. Run the latest version of FV8 (equivalent to
Chromium 122) using the .deb file and verify that it
operates correctly without any issues, following the
example command for chromium-browser-stable.

Execution: sudo dpkg -i deb_files/chromium-browser-
stable_122.0.6261.111-1_amd64.deb
chromium-browser-stable –headless –no-sandbox
–disable-gpu –disable-features=NetworkService –js-
flags=’–no-lazy’ https://google.com

Results: If even one forced execution happens, you
should see a message with the API that triggered
the execution and where it is in the code:
Example: Found match for API: setTimeout and
varproxy name: 0x7e0a001c7c1d <String[10]: #set-
Timeout>on position: 8066

(E2): [Compatibility and Patches] [20 human-minutes +
1 compute-hour] Apply patches to V8, incorporating
both FV8 and VisibleV8 patches. The crawler auto-
matically handles this for the latest version, as de-
tailed in the README.md file on the GitHub repos-
itory https: // github. com/ wspr-ncsu/ FV8 .

Execution: # Setup the crawler – that also handles
the pathes of FV8
Install required Python packages
pip install -r scripts/requirements.txt
export DOCKER_BUILDKIT=0
python scripts/vv8-cli.py setup

Results: Crawler setup should complete without any
errors.

(E3): [Higher Code Coverage] [30 human-minutes +
1 compute-hour + <50GB disk] Execute the FV8-

modified Chromium and Node.js environments on
the Tranco top 1k sites. For this evaluation, we do
not use malicious datasets for the artifact assess-
ment.

Execution: # Run the FV8 Crawler to visit Tranco
top X websites
python crawler_queue_tranco.py
To create full logs:
i) Modify ‘crawler_queue_tranco.py‘ script:
from ‘cmd = f"python3 ./scripts/vv8-cli.py
crawl -pp Mfeatures –no-headless –show-
chrome-log –disable-screenshot –disable-artifact-
collection –disable-har –disable-gpu –disable-
features=NetworkService –js-flags=’–no-lazy’
timeout -u url"‘
to ‘cmd = f"python3 ./scripts/vv8-cli.py crawl -pp
Mfeatures –no-headless –show-chrome-log –disable-
gpu –disable-features=NetworkService –js-flags=’–
no-lazy’ timeout -u url"‘
ii) Connect to the docker container:
‘docker exec -it DOCKER_ID /bin/bash‘
where DOCKER_ID belongs to the
‘vv8_log_parser_worker‘ container.

Results: You can check the docker environment for the
created files and the forced executions that hap-
pened because of FV8. You can modify the ‘tran-
co/tranco10.txt‘ part to ‘tranco/tranco100.txt‘ or
‘tranco/tranco1k.txt‘ to run the browser on more
Tranco websites. Check tranco/* for more options.

A.5 Notes on Reusability
We emphasize that the artifact evaluation aims to demon-
strate FV8’s usability rather than its performance on spe-
cific datasets. FV8 is a versatile tool applicable in various
scenarios and fully customizable. By creating a proof of
concept for a particular set of APIs and validating its
functionality, the research community can adapt both the
list of APIs and the datasets it operates on. FV8 can also
be extended to analyze other JavaScript-based environ-
ments beyond the scope of this paper, such as MongoDB
or Electron, using the same V8 patches. Researchers
can leverage FV8 to investigate other evasion techniques
and apply forced execution strategies across different
JavaScript ecosystems. Hotcrp Stable URL: https:
// sec24winterae. usenix. hotcrp. com/ paper/ 98 .

A.6 Version
Based on the LaTeX template for Artifact Evalua-
tion V20231005. Submission, reviewing and badging
methodology followed for the evaluation of this artifact
can be found at https://secartifacts.github.io/
usenixsec2024/.

https://github.com/wspr-ncsu/FV8
https://sec24winterae.usenix.hotcrp.com/paper/98
https://sec24winterae.usenix.hotcrp.com/paper/98
https://secartifacts.github.io/usenixsec2024/
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

