
USENIX Security ’25 Artifact Appendix: X.509DoS: Exploiting and
Detecting Denial-of-Service Vulnerabilities in Cryptographic Libraries

using Crafted X.509 Certificates

Bing Shi1, Wenchao Li1, Yuchen Wang1, Xiaolong Bai1*, Luyi Xing2*

1Alibaba Group, 2Indiana University Bloomington
{shibing.shi, huiren.lwc, tianwu.wyc}@alibaba-inc.com, bxl1989@gmail.com, luyixing@iu.edu

A Artifact Appendix

This artifact appendix is meant to be a self-contained doc-
ument which describes a roadmap for the evaluation of our
artifact.

A.1 Abstract

X.509DoSTool is developed to facilitate the rapid generation
of crafted certificates and the automatic detection of DoS
risks in cryptographic implementations. The tool primarily
provides three commands for users: the generate command
creates crafted certificates that can be used to identify spe-
cific DoS risks discussed in our paper; the edit command
allows modification of ASN.1 objects within a certificate
without violating DER encoding rules; and the detect com-
mand identifies specific issues in the implementations of the
cryptographic libraries mentioned in our paper. The artifact
evaluation should primarily focus on these three commands.
We provide the source code of the tool and the necessary test
scripts to facilitate the evaluation process.

A.2 Description & Requirements

This section lists the information necessary to recreate the
same experimental setup we have used to run our artifact.

A.2.1 Security, privacy, and ethical concerns

Conducting the artifact evaluation for X.509DoSTool does not
raise any security, privacy, or ethical concerns.

A.2.2 How to access

The artifact is available at our Zenodo repository (please
refer to v1.0.2 and later): https://zenodo.org/records/
14726326.

*Xiaolong Bai and Luyi Xing are corresponding authors.

A.2.3 Hardware dependencies

No special hardware dependencies are required for our artifact.
Our testing environment is built on a Linux server equipped
with 4GB of RAM and a 4-core CPU, running Ubuntu v22.04.

A.2.4 Software dependencies

The software dependencies required to run this tool primarily
include the following:

• Python v3.10.12

• pip v22.0.2

• setuptools v75.8.0 (Python package)

• psutil v6.0.0 (Python package)

• pyasn1 v0.6.0 (Python package)

• pyasn1_modules v0.4.0 (Python package)

• pycryptodome v3.20.0 (Python package)

• OpenSSL v3.0.2

The versions used during testing should match or closely
align with those mentioned above, as significant version dis-
crepancies may introduce potential untested issues.

Additionally, before evaluators attempt to use the tool to
detect issues in a specific library, the corresponding version of
the library (as listed in Table 3 and Table 4 of our paper) needs
to be installed first. The libraries and their version information
involved include:

• OpenSSL v3.0.0, v1.0.2

• Botan v1.11.21, v1.11.26, v3.2.0, v3.4.0

• Bouncy Castle v1.70, v1.77

• Crypto++ v5.6.4, v8.9

• GnuTLS v3.7.10, v3.7.11

• phpseclib v3.0.18, v3.0.33, v3.0.35

mailto:shibing.shi@alibaba-inc.com
mailto:huiren.lwc@alibaba-inc.com
mailto:tianwu.wyc@alibaba-inc.com
mailto:bxl989@gmail.com
mailto:luyixing@iu.edu
https://zenodo.org/records/14726326
https://zenodo.org/records/14726326

A.2.5 Benchmarks

None.

A.3 Set-up
This section includes the installation and configuration steps
required to prepare the environment to be used for the evalua-
tion of our artifact.

A.3.1 Installation

To install, run pip install . in the root directory of the
repository. This will package the necessary files and create a
command named x509dostool.

Upon installation, the command is readily available for
the root user. However, for non-root users, it is necessary
to first run export PATH=$PATH:~/.local/bin before the
command can be used.

A.3.2 Basic Test

To execute, run x509dostool. If the installation is successful,
it will display the tool’s version number along with a help
page containing the three basic subcommands: generate,
edit, and detect.

A.4 Evaluation workflow
This section includes the operational steps and experiments re-
quired to evaluate the functionality of our artifact and validate
the key results and claims of our paper.

A.4.1 Major Claims

Our major claims include the following:

(C1): X.509DoSTool can be used to rapidly generate crafted
certificates that facilitate the identification of specific
DoS risks discussed in our paper.

(C2): X.509DoSTool can be used to modify ASN.1 objects
involved in a certificate without violating DER encoding
rules.

(C3): X.509DoSTool can be used to identify specific issues
in the implementations of the cryptographic libraries
mentioned in our paper.

A.4.2 Experiments

The corresponding experimental steps are as follows:

(E1): Test the generate command of x509dostool, and use
openssl to examine the generated certificate.
Preparation: Enter the test/generate/ directory.
Execution: Run ./test_generate.sh.

Results: The script prints each executed generate
command and checks the execution status, as well as the
parsing status of the generated certificate using openssl.
If all commands pass the aforementioned checks, the
message all tests passed will be displayed. Additionally,
running ./test_generate.sh --verbose will output
the intermediate results of the generate and openssl
commands, providing evaluators with further details for
evaluation.

(E2): Test the edit command of x509dostool, and use
openssl to examine the edited certificate.
Preparation: Enter the test/edit/ directory.
Execution: Run ./test_edit.sh.
Results: Upon initial execution, a directory named
certs/ will be created, containing the certificates to
be utilized. The script then prints each executed edit
command and checks the execution status, as well as the
parsing status of the edited certificate using openssl.
If all commands pass the aforementioned checks, the
message all tests passed will be displayed. Addition-
ally, running ./test_edit.sh --verbose will output
the intermediate results of the edit and openssl com-
mands, providing evaluators with further details for eval-
uation.

(E3): Test the detect command of x509dostool, and com-
pare it with the experimental results presented in Section
7 of our paper.
Preparation: Enter the test/detect/ directory.
Execution: Run ./test_detect.sh.
Results: Upon initial execution, a directory named
certs/ will be created, containing the certificates to
be utilized. The script then prints the cryptographic li-
braries present in the current environment along with
their respective versions, and outputs the results of the
detection of issues within these libraries. Note that the
script test_detect.sh performs detection against the
cryptographic libraries present in the evaluator’s current
environment. Given the tool’s requirements, at least one
OpenSSL library will be present in the environment. The
evaluator can install the corresponding library of interest
in the environment for detection.

A.5 Notes on Reusability

Note that the version numbers of the cryptographic libraries
tested, as indicated in our paper, are not strictly required for
reproducing the experimental results. In most cases, installing
an earlier version to test as many cases as possible for de-
tection is also feasible. However, this does not imply that
any version earlier than these can be used, as some issues
were introduced only after specific version updates. Addi-
tionally, if users wish to apply this tool to libraries beyond

those discussed in this paper, they can refer to the scripts
in test/scripts/ for creating corresponding scripts. Users
can also specify other parameters during the execution of the
generate command or use the edit command to enrich the
contents of the test/detect/certs/ directory.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

