ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

susenix yusenix susenix
ASSOCIATION ASSOCIATION @ Hssociation

REPRODUCED

AVAILABLE

USENIX Security *25 Artifact Appendix of “GraphAce: Secure Two-Party
Graph Analysis Achieving Communication Efficiency”

Jiping Yu 1'>* Kun Chen 2, Yunyi Chen !?*, Xiaoyu Fan

1.2 Xijaowei Zhu 2,

Cheng Hong 2, and Wenguang Chen !

! Tsinghua University
2 Ant Group

A Artifact Appendix

A.1 Abstract

The paper proposes GraphAce, an efficient secure two-party
graph analysis framework. For each iteration, it achieves low
complexities of @(|V|) communication, breaking the Q(|V |+
|E|) lower bound of previous secure solutions, and O(|V|+
|E|) computation, which is the same as insecure methods.
Evaluations show that GraphAce exceeds previous methods
by up to tens of thousands of times in speed and saves up to
99.99% communication, depending on the application and the
network. This artifact is anticipated to satisfy: (Available) the
source code of GraphAce and other materials mentioned in
the “Open Science” Section are made available; (Functional)
the artifact contains the necessary instructions and scripts
for the software to be executed successfully; (Reproduced)
the artifact can reproduce the main claims of the paper, i.e.
GraphAce outperforms the existing work GraphSC in terms
of communication and execution time, for various graphs,
applications, and network configurations.
One-stop quick start (for Ubuntu systems):

sudo apt install docker.io xz-utils
wget -0 graphace.tar.xz "https://zenodo.org/\
records/15009743/files/graphace.tar.xz"
cat graphace.tar.xz | xz -d | tar x
cd graphace
sudo docker build -t graphace .
sudo docker run \
—--cap-add SYS_NICE --cap-add NET_ADMIN \
-v ./results:/app/results -it graphace \
python3 run.py --preset toy

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

“Work is done during the research internship at Ant Group.

A.2.2 How to access

The artifact is available at https://zenodo.org/records/
15009743. (Note that this is an updated version of https:
//zenodo.org/records/14720419.)

A.2.3 Hardware dependencies

The artifact requires a machine that meets these requirements:

* CPU: x86-64. For more precise replication of the authors’

results, high-performance server CPUs are recommended

(the authors employed two Intel Xeon 8380 CPUs, pro-

viding a total of 80 cores or 160 threads). However, PC

or laptop CPUs are generally sufficient to confirm the
artifact’s operational functionality.

* RAM: varies with the experiment. The most extensive
experiment requires 768 GB of memory. However, 128
GB is sufficient to validate the major claims. The minimal
RAM necessary to conduct a meaningful comparative
experiment is 32 GB.

* Disk: at least 32 GB free space.

¢ OS: Linux (distribution is not restricted).

* Network: an Internet connection.

A.2.4 Software dependencies

The artifact is available in .tar.xz format, necessitating de-
compression capabilities of the evaluator. Docker is required
to evaluate this artifact. For example, on Ubuntu systems, the
required dependencies can be installed using the command
sudo apt install docker.io xz-utils.

Docker handles all specific dependencies related to compi-
lation, thus freeing the evaluator from these concerns.

A.2.5 Benchmarks

The artifact operates independently of external data sets. It
relies solely on synthetic data that the program generates
according to the specified data size.

https://zenodo.org/records/15009743
https://zenodo.org/records/15009743
https://zenodo.org/records/14720419
https://zenodo.org/records/14720419

A.3 Set-up
A.3.1 Installation

For artifact installation, run the commands listed below, as-
suming that graphace.tar.xz has been downloaded to the
present working directory.

cat graphace.tar.xz | xz -d | tar x
cd graphace
sudo docker build -t graphace

This is expected to finish in 20 minutes. Should the instal-
lation encounter issues owing to an external factor (such as
an unstable Internet connection preventing the download of a
dependency), it may be beneficial to clear the Docker build
cache and attempt the process again.

A.3.2 Basic Test
To perform a basic test, execute the following:

sudo docker run \
--cap-add SYS_NICE --cap-add NET_ADMIN \
-v ./results:/app/results -it graphace \
python3 run.py \
--framework graphace --graph scaleld \
--application pr --network 1DC

This command executes the PageRank application using
GraphAce on the scale-14 graph over a 1-DC network. The
completion is expected in one minute. Upon success, it pro-
vides information on execution time and the amount of com-
munication, indicating the artifact’s successful installation.

Should you be interested, the command is thoroughly ex-
plained as follows.

* The --cap-add parameters are essential for the artifact’s
proper functionality. Specifically, SYS_NICE permits the
regulation of NUMA accesses within the Docker con-
tainer, and NET_ADMIN facilitates the manipulation of
bandwidth and network latency. These networking effects
are confined to the container and do not impact programs
external to the Docker environment.

» The -v parameter ensures that running logs are accessible
in the results directory outside the container.

* The last four parameters are configurable, which is es-
pecially useful if the evaluator is interested in a specific
experiment but does not wish to conduct a whole experi-
ment preset (E1 to ES) below. In detail,

* ——framework specifies the framework to run. It can be
graphace or graphsc.

* ——graph specifies the input graph. GraphSC sup-
ports scaleld, scalel7, and scale20, while
GraphAce supports scale{14,17,20,24,27} and
scale{14,17,20}{1I1,11I1,1V,V} (for Table 3 and
Figure 8). There is no scale201, for example, because
it is actually the same as scale20.

* ——application specifies the application to run. It can
be pr, spmv, sslp, wce, Or mssp.

* ——network specifies the network configuration. It can
be 1DC, interDC, or interContinent.

A.4 Evaluation workflow
A.4.1 Major Claims

The artifact is expected to support the major claims presented

in the paper, as outlined below.

(C1): GraphAce decreases the amount of communication
per iteration compared to GraphSC, in multiple applica-
tions and varying graph scales. This is demonstrated by
any of the experiments (E1) to (E5), whose results are
illustrated in Figure 6 of Section 6.2.

(C2): GraphAce decreases iteration time in most scenarios
compared to GraphSC, in multiple applications, varying
graph scales, and different network conditions. This is
demonstrated by any of the experiments (E1) to (ES),
whose results are illustrated in Figure 7 of Section 6.2.

(C3): GraphAce consistently provides communication and
time savings compared to GraphSC for graphs with the
same scale but varying average degrees, as observed in
the two representative applications, PR and MSSP. This
is demonstrated by any of the experiments (E1) to (ES),
whose results are illustrated in Figure 8 of Section 6.3.

A.4.2 Experiments

Rather than presenting a separate experiment for each figure,
we present five “presets,” each of which can at least partially
support all three major claims. The rationale behind this is the
substantial time required to fully reproduce each subfigure;
the quickest takes 6 hours, whereas the slowest takes up to 2
days, and we have over twenty subfigures. Therefore, we offer
five experimental presets with completion times ranging from
10 minutes to 10 days. This allows the evaluator to select
an appropriate preset based on their compute-time budget, to
derive the most meaningful results within the constraints of
limited execution time.

Experiment Compute | Min. | Support Support
preset time' RAM (C1)? (C2)&(C3)?
(E1) Toy 10 min. 32G | Limited Limited
(E2) Small 2.5 hours | 32G Partial Partial
(E3) Medium | 15 hours | 128G Yes Partial
(E4) Large 75 hours 128G Yes Yes
(ES) XLarge 10 days 768G | Yes, better speedup ratio

Table 1: Experiment presets

I'The compute time is estimated on the basis of the hardware used by the
authors, specifically two Intel Xeon 8380 CPUs with a total of 80 cores or
160 threads. If the evaluator uses a lower performance machine, it is expected
that additional computation time will be required for the experiments.

Table | provides data on the five presets available. Larger
presets necessitate increased computational time and RAM
but can yield more thorough results (e.g., encompassing more
applications and network configurations) and an improved
ratio, as GraphAce displays enhanced complexity and benefits
more from larger inputs. Therefore, selecting the largest fea-
sible preset is advised to more accurately replicate the results
presented in the paper. Should you need to stop execution
prematurely, rest assured that an intermediate CSV file con-
taining all results up to that moment is generated at the end
of each run, enabling the evaluator to review partial findings
even if the script does not run to completion.

In the presets “Toy” and “Small”, the resulting data for
Figure 8 refer to graphs of scale 14, rather than scale 20 in
the paper. Analogously, the “Medium” and “Large” presets
correspond to a scale of 17. The speedup ratio might be less
advantageous than reported in the paper if the utilized CPU
exhibits lower performance than the one used by the author,
or if only smaller presets are executed.

(E1): [Toy preset] [10 compute-minutes + 32 GB RAM]:
This preset aims to provide a quick glimpse of the results.
It is expected to verify (C1) to (C3), but only on a single
application (PR), a single network setting (1-DC), and
limited graph sizes (up to scale 20 for GraphAce and
scale 14 for GraphSC).
How to: Execute the command and wait for the results.
Preparation: No specific preparation is needed other
than to complete the basic test.
Execution: Execute the following command:

sudo docker run \
-—cap-add SYS_NICE --cap-add NET_ADMIN \
-v ./results:/app/results -it graphace \
python3 run.py --preset toy

Results: The results will appear in the results direc-
tory as a CSV file, which can indicate that (part of C1)
GraphAce decreases the communication amount for PR,
(part of C2) GraphAce shortens the execution time for
PR 1-DC, and (part of C3) this benefit remains consistent
across graphs with varying average degrees.

(E2): [Small preset] [2.5 compute-hours + 32 GB RAM]:
This preset aims to provide a slightly more comprehen-
sive view of the results. It is expected to verify (C1) to
(C3), but only on two representative applications (PR
and MSSP), two network settings (1-DC and Inter-DC),
and limited graph sizes (up to scale 20 for GraphAce PR
and scale 14 for the others).

Execution: sudo docker run \
--cap-add SYS_NICE --cap-add NET_ADMIN \
-v ./results:/app/results -it graphace \
python3 run.py --preset small
Results: The results will appear in the results direc-
tory as a CSV file, which can indicate that (part of C1)
GraphAce decreases the communication amount for PR

and MSSP, (part of C2) GraphAce shortens the execution
time for PR/MSSP 1-DC/Inter-DC, and (part of C3) this
benefit remains consistent across graphs with varying
average degrees.

It should be noted that GraphAce could potentially oper-
ate at a slower speed compared to GraphSC for MSSP
1-DC, particularly for the constrained graph scale 14, as
mentioned in the paper.

(E3): [Medium preset] [15 compute-hours + 128 GB
RAM]: This preset is expected to verify (C1) to (C3) for
all the five applications, but only on two network settings
(1-DC and Inter-DC), and limited graph sizes (Scale 24
for GraphAce PHE, Scale 17 for GraphAce FHE and
GraphSC 1-DC, and Scale 14 for GraphSC Inter-DC).
Execution: sudo docker run \

—--cap-add SYS_NICE --cap-add NET_ADMIN \

-v ./results:/app/results -it graphace \

python3 run.py --preset medium
Results: The results will appear in the results di-
rectory as a CSV file, which can indicate that (C1)
GraphAce decreases the communication amount, (part
of C2) GraphAce shortens the execution time for 1-
DC/Inter-DC, and (part of C3) this benefit remains con-
sistent across graphs with varying average degrees.

(E4): [Large preset] [75 compute-hours + 128 GB RAM]:
This preset is expected to fully verify all major claims
(C1) to (C3).

Execution: sudo docker run \
--cap-add SYS_NICE --cap-add NET_ADMIN \
-v ./results:/app/results -it graphace \
python3 run.py --preset large

Results: The results will appear in the results direc-

tory as a CSV file, which fully supports (C1) to (C3).

(ES): [XLarge preset] [10 compute-days + 768 GB RAM]:
This preset is expected to fully verify all major claims
(C1) to (C3). In comparison to (E4), it is anticipated that
this will deliver a greater communication saving ratio or
an increase in execution time speedup, due to the larger
graph scale and GraphAce’s complexity improvement.
Execution: sudo docker run \

—--cap-add SYS_NICE --cap-add NET_ADMIN \
-v ./results:/app/results -it graphace \
python3 run.py —--preset xlarge
Results: The results will appear in the results direc-
tory as a CSV file, which fully supports (C1) to (C3).

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

