
USENIX Security ’25 Artifact Appendix: "Achilles: A Formal Framework
of Leaking Secrets from Signature Schemes via Rowhammer"

Junkai Liang1,∗, Zhi Zhang2,∗, Xin Zhang1,∗, Qingni Shen1,†, Yansong Gao2,
Xingliang Yuan3, Haiyang Xue4, Pengfei Wu4, Zhonghai Wu1,†

1Peking University, 2The University of Western Australia,
3The University of Melbourne, 4Singapore Management University

{ljknjupku, zzhangphd}@gmail.com, zhangxin00@stu.pku.edu.cn,
qingnishen@pku.edu.cn, garrison.gao@uwa.edu.au, xingliang.yuan@unimelb.edu.au,

haiyangxc@gmail.com, pfwu@smu.edu.sg, wuzh@pku.edu.cn

A Artifact Appendix

A.1 Abstract

To demonstrate our main results in the paper, we prepare
our artifact which contains 3 main components: 1) The at-
tacker’s code related to fault injection (in the directory 1.Fault-
injection/). This code implements the specific fault injection
techniques used in the research, including memory profiling,
memory massage and online row refresh. This code needs
to be run on a personal computer with vulnerable DIMMs.
We have promised to share this component for availability.
2) The attacker’s code that analyses the faulty signature (in
the directory 2.Post-analysis/). This code analyses the faulty
signatures and outputs the leakage of the secret bits. We have
promised to share this component for availability and func-
tionality. 3) The automation tool for Achilles which analyses
the signature schemes (in the directory 3.Automation-tool/).
This code automates Achilles analysis for signature schemes.
We have promised to share this component for availability
and functionality.

A.2 Description & Requirements

The fault injection part in our artifact has to be run on a
machine with vulnerable DIMMs and other parts can be run
on any general-purpose personal computer.

A.2.1 Security, privacy, and ethical concerns

Our artifact may be destructive. When running with vulner-
able DIMMs, the display screen may stop working and the

*: The authors contribute equally to this paper.
†: Corresponding author. This work was supported by the National

Key R&D Program of China under Grant No. 2022YFB2703301, PKU-
OCTA Laboratory for Blockchain and Privacy Computing and the Singapore
Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant.

system may abort. We recommend doing a data or system
backup before starting the experiment.

A.2.2 How to access

Stable URL pointing to the latest version of our artifact:
https://doi.org/10.5281/zenodo.14735639.
Stable URL for the feedback and dynamic changes: https:
//github.com/liang-junkai/Achilles.

A.2.3 Hardware dependencies

The fault injection part in the artifact needs to be run on linux
kernel in a machine with vulnerable DIMMs. If the underlying
hardware is not vulnerable, the program will work but will
not publish bit-flip information. We perform the experiments
using a vulnerable Samsung DDR3-1300 4G DIMM (part
number: M473B5273DH0-YK0) deployed in a Lenovo T420
equipped with Intel Core i5-2430M CPU (Sandy Bridge) in
Ubuntu 20.04.

A.2.4 Software dependencies

To run the post analysis part in our artifact, the corre-
sponding library, e.g., wolfssl, relic and liboqs should be
installed first. In component 2, we evaluated 3 libraries
which are relic-toolkit-0.6.0, wolfssl-5.6.6, and
liboqs-0.10.0 on ubuntu 20.04.

A.2.5 Benchmarks

None.

https://doi.org/10.5281/zenodo.14735639
https://github.com/liang-junkai/Achilles
https://github.com/liang-junkai/Achilles


A.3 Set-up

A.3.1 Installation

We recommend installing 3 libraries: WolfSSl-5.6.6, Relic-
0.6.0, Liboqs-0.10.0.

A.3.2 Basic Test

After installation, test the executable file in each directory
(using the ReadMe.md), to see if the library is correctly linked.

A.4 Evaluation workflow

A.4.1 Major Claims

The major claims related to our artifact are about the feasibil-
ity of the fault injection and the post-Rowhammer analysis,
and the automation tool.
(C1): The fault injection component in our artifact contains

all the code related to Rowhammer preprocessing and
online injection, such as memory profiling, memory way-
laying and double-sided hammering

(C2): The post-analysis component in our artifact can suc-
cessfully recover the secret bits using faulty signatures.

(C3): The automation tool analyses the vulnerability of sev-
eral signature schemes with correct input.

A.4.2 Experiments

Here are the instructions that we run each component.
(E1): [Fault injection] [1 human-hour + 10+ compute-hour

+ 5GB disk]:
How to: First run memory profiling code and identify
vulnerable positions in the DIMMs. The perform the end-
to-end Rowhammer attack and starts online injection.
Execution: In directory ./1.Fault-injection/memory-
profiling, run the following codes for about 10 or more
hours:

sudo ./rowhammer-sandy -d 1 -p 0.6

Then in directory ./1.Fault-injection/Online-injection,
run the code in each subdirectory

sudo ./attack

If some offset page information is output, it means the
test is successful. If the DIMMs are vulnerable and the
result of the memory profiling is correct, faulty signa-
tures will be output.

(E2): [Post-analysis] [1 human-hour + 20 compute-minute]:
How to: This component analyses the faulty signatures
in libraries relic, wolfssl and liboqs.

Execution: In each subdirectory, first install each li-
brary following the commands in ReadMe.md, then run

./[scheme name]

Results: If the leakage information is output (position
and value of the secrets), the test is successful.

(E3): [Automation tool] [10 human-minutes + 5 compute-
minutes]:
How to: This code automatically analyses several sig-

natures and output if they are vulnerable to our 2
attack algorithms, DFA and SCA.

Execution: In the directory, after installing the pack-
ages in the requirements.txt, run

python3 auto.py

Results: If the vulnerabilities of the schemes are output,
the test is successfully.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://www.wolfssl.com/documentation/manuals/wolfssl/chapter02.html
https://github.com/relic-toolkit/relic/wiki/Building
https://github.com/relic-toolkit/relic/wiki/Building
https://github.com/open-quantum-safe/liboqs
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


