
USENIX Security ’25 Artifact Appendix: BLens: Contrastive Captioning
of Binary Functions using Ensemble Embedding

Tristan Benoit∗†¶, Yunru Wang∗†‡, Moritz Dannehl†‡, Johannes Kinder†‡

† Ludwig-Maximilians-Universität München, Germany
‡ Munich Center for Machine Learning, Germany

¶ Bundeswehr University Munich, Germany

A Artifact Appendix

A.1 Abstract
The artifact provides the datasets, implementation, and eval-
uation framework for BLens, a novel function name predic-
tion model for stripped binaries. BLens combines COMBO
(COntrastive Multi-modal Binary embedding Optimizer) to
capture spatial relationships within the binary code and LORD
(Likelihood Ordered Regressive Decoder) to improve func-
tion name prediction precision. We conduct ablation studies
to validate the effectiveness of both components and com-
pare BLens with several state-of-the-art tools in cross-binary
and cross-project settings. Additionally, we introduce a strict
setting to further evaluate generalization. This appendix con-
tains the necessary information for reproducing the results
and verifying the functionality of BLens

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact does not disable security mechanisms or process
sensitive data, so it poses no security or privacy risks.

A.2.2 How to access

The artifact package can be accessed via GitHub repository,
which includes the code, evaluation logs, and supplementary
materials for implementation details. The Zenodo record con-
tains all datasets in addition to the items available on GitHub.

A.2.3 Hardware dependencies

The minimum hardware requirements to reproduce the train-
ing and evaluation are 30 GB of memory, a GPU with 80 GB
of VRAM, and 200 GB of available storage space.

A.2.4 Software dependencies

We recommend using a Python virtual environment, which
may require virtualenvwrapper. Enchant is needed for the

tokenizer, and Rust is required for VarCLR calculations. In-
stallation instructions are provided in the INSTALL.md file in the
GitHub repository.

A.2.5 Benchmarks

Pre-computed embeddings, tokenizers, and logs are contained
in the data folder from the Zenodo record.

A.3 Set-up
A.3.1 Installation

1) Clone the package from the GitHub repository.
2) Download and extract data.tar.gz from the Zenodo record.
3) Follow the instructions in the INSTALL.md.

A.3.2 Basic Test

Once the installation is completed, users can do the following
tests to check if the tool is properly installed.
1) Test the training work flow.

$ workon blens
$ CUDA_VISIBLE_DEVICES=0 nohup python3 RunExp.py -data-

↪→ dir=DATA-FOLDER --basic-test >
↪→ basic_test_training.txt &

2) Test the evaluation work flow.

$ cd evaluation
$ python3 new_experiments_evaluator.py -data-dir=DATA-

↪→ FOLDER -d=basic_test --cross-project >
↪→ basic_test_evaluation.txt

If the installation is successful, 11 files will be generated in
the DATA-FOLDER/xp/basic_test directory.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): BLens achieves higher metrics compared to state-of-
the-art competitors in the cross-project and strict set-
tings as well as in the easier cross-binary setting. This

https://github.com/lmu-plai/blens
https://doi.org/10.5281/zenodo.14713022
https://github.com/lmu-plai/blens
https://doi.org/10.5281/zenodo.14713022
https://github.com/lmu-plai/blens
https://doi.org/10.5281/zenodo.14713022


is proven by the experiment (E1), whose results are re-
ported in Table 3 and 5, and experiment (E2) reported in
Tables 1, 3 and 5.

(C2): COMBO pre-training and the new LORD decoder are
shown to be beneficial in terms of F1 score. This is
proven by experiments (E3), (E4), and (E5) reported
in Tables 6 and 8 of the ablation subsection (6.4).

A.4.2 Experiments

Given the time constraints of the artifact evaluation, we have
structured our evaluation accordingly.

In the paper, (C1) is evaluated by retraining competitors
such as XFL, SymLM, and AsmDepictor. Addtionally, BLens
is not only trained on the full dataset in both cross-binary and
cross-project settings; for better comparison, two variants are
further trained on subdatasets generated from SymLM and
AsmDepictor preprocessing. In all these settings, we consider
F1 scores as well as RougeL, Bleu, and VarCLR scores.

In the artifact evaluation, we propose only training a new
BLens model in the cross-project setting. Other experiments
are provided in the form of logs containing precomputed
predictions. Lastly, we primarily evaluate our experiments
using the F1 score, which is our central metric.

In the paper, (C2) is evaluated using five models. The first
is the full BLens model, trained for 80 epochs, similar to each
ablation model. The variations include: BLens without pre-
training (BL-NP); BLens with only the pre-training phase;
BLens with a simple decoder that uses teacher forcing while
maintaining a threshold; and BLens with teacher forcing but
without implementing the threshold (SIMPLE-T0).

In the artifact evaluation, we propose to only train new
models for BL-NP, and SIMPLE-T0. Other experiments are
provided in the form of logs containing precomputed predic-
tions.
(E1): [5 human-minutes + 96 compute-hours] Experiment

E1 is to validate Claim C1 regarding the cross-project
and strict settings. We validate this claim by training
a new model from scratch in the cross-project setting
and measuring F1 scores in the cross-project and strict
settings.
Execution: Train the model for around 96 hours:

$ workon blens
$ CUDA_VISIBLE_DEVICES=0 nohup python3 RunExp.py -data-

↪→ dir=DATA-FOLDER -d=new-cross-project -config=
↪→ main.json --cross-project -pretrain -train -
↪→ inferBest > c1-cross-project-training.txt &

Get metrics for this new model:

$ cd evaluation
$ python3 new_experiments_evaluator.py -data-dir=DATA-

↪→ FOLDER -d=new-cross-project --cross-project >
↪→ c1-new-cross-project.txt

Figure 1: Example of c1-new-cross-project.txt showing the
result of retraining BLens in the cross-project setting.

Results: Review the file c1-new-cross-project.txt. Com-
pare the F1 score of BLens in the cross-project setting
in Table 3 from the paper, which is 0.46, with the F1
score in the table titled Setting: cross-project produced
by the script. Compare the F1 score of BLens in the strict
setting in Table 5 from the paper, which is 0.294, with
the one produced by the script. A difference of around
±0.02 is expected due to weight initialization.

(E2): [5 human-minutes + 10 compute-minutes] Experiment
E2 is to validate Claim C1 regarding other models and
the cross-binary setting. We validate this claim by mea-
suring F1 scores from precomputed predictions in logs.
Execution: Compute metrics based on logs:

$ cd evaluation
$ python3 evaluator_c1.py -data-dir=DATA-FOLDER > c1-

↪→ summary.txt

Results: Read the output c1-summary.txt. Compare met-
rics scores in Tables 1, 3 and 5 from the paper to the
corresponding metrics in tables produced by the script.
There should be no difference because this summary is
based on precomputed predictions in logs.

(E3): [5 human-minutes + 54 compute-hours] Experiment
E3 is to validate (C2). We train a new BL-NP model
from scratch and measure F1 scores for this model.
Execution: Train the model for around 54 hours:

$ CUDA_VISIBLE_DEVICES=0 nohup python3 RunExp.py -data-
↪→ dir=DATA-FOLDER -d=new-np -config=ablation-np.
↪→ json --cross-project -pretrain -train -
↪→ inferBest > c2-np-training.txt &

Get metrics for this new model:

$ cd evaluation
$ python3 new_experiments_evaluator.py -data-dir=DATA-

↪→ FOLDER -d=new-np --cross-project > c2-new-np.
↪→ txt



Figure 2: Example of c2-new-np.txt showing the result of re-
training BL-NP.

Results: Review the file c2-new-np.txt. Compare the
F1 score of BL-NP from Table 6 in the paper, which
is 0.287, with the one found in the table titled Setting

↪→ : cross-project generated by the script. Expect the
score to be around 0.287± 0.10 due to the instability
without COMBO pre-training phase. It should remain
well below 0.445.

(E4): [5 human-minutes + 32 compute-hours] Experiment
E4 is to validate (C2). We train a new SIMPLE-T0 model
from scratch and measure F1 scores for this new model.
Execution: Train the model for around 32 hours:

$ CUDA_VISIBLE_DEVICES=0 nohup python3 RunExp.py -data-
↪→ dir=DATA-FOLDER -d=new-simple-t0 -config=
↪→ ablation-simple.json --cross-project -pretrain
↪→ -train -inferT0 > c2-simple-t0-training.txt &

Get metrics for this new model:

$ cd evaluation
$ python3 new_experiments_evaluator.py -data-dir=DATA-

↪→ FOLDER -d=new-simple-t0 --cross-project --
↪→ evaluateNoTreshold > c2-new-simple-t0.txt

Figure 3: Example of c2-new-simple-t0.txt showing the result
of retraining SIMPLE-T0.

Results: Review the file c2-new-simple-t0.txt. Compare
the F1 score of SIMPLE-T0 from Table 8 in the paper,
which is 0.409, with the one found in the table titled
Setting: cross-project generated by the script. Expect
the score to be around 0.409± 0.01 due to weight ini-
tialization. Again, it should remain well below 0.445.

(E5): [5 human-minutes + 5 compute-minutes] Experiment
E5 is to validate Claim C2 regarding other LORD ab-
lation models. We validate this claim by measuring F1
scores from precomputed predictions in logs.

Execution: Compute metrics based on logs:

$ cd evaluation
$ python3 evaluator_c2.py -data-dir=DATA-FOLDER > c2-

↪→ summary.txt

Results: Read the output c2-summary.txt. Compare F1
scores in Tables 8 from the paper to corresponding
scores in the script-produced tables. No differences are
expected since this is based on logs.

(E6): Optional full re-training [5 human-minutes + 47
compute-days] Experiment E6 is an optional experiment
to re-train each BLens model and to measure their met-
rics. It requires around 47 days of computations with
one GPU card.
Preparation: Modify line 3 of the retrainAll.sh script
to set the correct DATA-FOLDER path.
Execution: Run the script:

$ nohup bash retrainAll.sh &

Results: Read outputs in the evaluation folder such as
cb-bl.txt (for the BLens model in the cross-binary set-
ting). Compare new tables with tables from the paper.
Due to weight initialization, expect the F1 score to dif-
fer by around ±0.02 except in BL-NP case, in which it
differs by ±0.10.

A.5 Notes on Reusability
To employ a different dataset, you should begin by creating a
dataset summary pickle file. This file should contain three lists
categorizing functions into training, validation, and test sets,
and each function within these lists should be represented by
an array of the form [binary path, virtual address, real name,
untangled name, placeholder, binary identifier, function iden-
tifier]. The binary and function identifiers are specifically
required for DEXTER embeddings due to its precise database
schema. Then, use Tokenizers.py to save a tokenizer tailored
to your dataset. Subsequently, for each function, generate an
embedding using the appropriate pre-processing tools pro-
vided by the creators of PALMTREE, DEXTER, and CLAP.
These embeddings should be saved in dictionaries with keys
as (binaryPath, virtual address) or (binary identifier, function
identifier) for DEXTER embeddings, and values should be
PyTorch tensors. Once these are saved using pickle, adjust the
RunExp.py file to load these embeddings and the related dataset
summary file and tokenizer.

To extend Blens with additional embeddings, you should
modify the COMBO.py constructor to incorporate another mod-
ule based on either Dexter2Seq.py for function embeddings
or PalmTree2Seq.py for basic block embeddings. Update the
combo_input function within COMBO.py to integrate this new
module. Additionally, create a corresponding pickle dictio-
nary with keys as (binary path, virtual address). Adjustments
should be made to RunExp.py, builder.py and COMBO.py to load



new embeddings and to read the function encoder’s new hyper-
parameters added to the configuration file configs/main.json.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


